1. Roughly plot data and regression. Label Axis.

Regression used:	
First x (a)	
Last x (b)	

Find the average rate of change between the first and last x -values using regression
\{Y1(b)-Y1(a) $\} /\{b-a\}$

Average Rate of Change
2. Roughly split the graph into two regions and perform different regressions on each side.

Plot data and regressions. Label Axis.

left regression split at a Y1=vars 5: >> 1: RegEq /($x \leq a)$ right regression Y2=vars 5: >>1: $\operatorname{RegEq} /(x \geq a)$	Left Regression used:	
	Right Regression used:	
	Location of split (a)	
Find Y1(a) Y2(a)	$\lim _{x \rightarrow a^{-}} r(x)$	
	$\lim _{x \rightarrow a^{+}} r(x)$	

3. Roughly split the graph into two regions and perform different regressions on each side.

Plot data and regressions. Label Axis.

left regression split at a	Left	
	Y1 $=$ vars 5: $\gg 1: \operatorname{RegEq} /(\mathrm{x} \leq \mathrm{a})$	Regression
used:		

4. For a continuous regression: Given $\varepsilon=$ small number Find $\delta>0$ that satisfies

Roughly adjust the regressions so the graph is continuous.
Plot data and graph the regressions. Label Axis.

$\begin{aligned} & \text { Y1 (x)=regression (y2=split regression) } \\ & \text { Y3 }=\mathrm{L}-\varepsilon \\ & \text { Y4 }=\mathrm{L}+\varepsilon \\ & \text { Calc 5:intersect y1 and y3 }=\mathrm{x} 1 \\ & \text { Calc 5:intersect y1(2) and y4 }=x 2 \\ & \delta=\operatorname{maximum}(\|a-\mathrm{x} 1\|,\|\mathrm{a}-\mathrm{x} 2\|) \end{aligned}$	$\lim _{x \rightarrow a} r(x)=\mathrm{L}$	
	Given $\varepsilon=$	
	Find $\delta=$	

5. Roughly plot data and regression. Draw the secant and tangent lines at $x=$ a Label Axis.

Pick x values in order

$\mathrm{X} 1=$	
$\mathrm{X} 2=$	
$\mathrm{X} 3=$	
$\mathrm{a}=$	
$\mathrm{X} 4=$	
$\mathrm{X} 5=$	
$\mathrm{X} 6=$	

Find the average rate of change between the exterior x -values around $\mathrm{x}=\mathrm{a}$ using regression

$$
\begin{array}{|l|l}
\hline\{\mathrm{Y} 1(\mathrm{x} 1)-\mathrm{Y} 1(\mathrm{x} 6)\} /\{\mathrm{x} 1-\mathrm{x} 6\}=\mathrm{m}_{\text {sec }} & \begin{array}{l}
\text { Average } \\
\text { Rate of } \\
\text { Change }
\end{array} \\
\hline
\end{array}
$$

Find the average rate of change between an interior x -values around $\mathrm{x}=$ a using regression

$$
\begin{array}{|l|l|}
\hline\{\mathrm{Y} 1(\mathrm{x} 2)-\mathrm{Y} 1(\mathrm{x} 5)\} /\{\mathrm{x} 2-\mathrm{x} 5\}=\mathrm{m}_{\text {sec }} & \begin{array}{l}
\text { Average } \\
\text { Rate of } \\
\text { Change }
\end{array} \\
\hline
\end{array}
$$

Find the average rate of change between the more interior x -values around $\mathrm{x}=\mathrm{a}$ using regression

$$
\begin{array}{|l|l|}
\hline\{\mathrm{Y} 1(\mathrm{x} 3)-\mathrm{Y} 1(\mathrm{x} 4)\} /\{\mathrm{x} 3-\mathrm{x} 4\}=\mathrm{m}_{\text {sec }} & \begin{array}{l}
\text { Average } \\
\text { Rate of } \\
\text { Change }
\end{array} \\
\hline
\end{array}
$$

Find the instnataneous rate of change at $\mathrm{x}=\mathrm{a}$

nderiv $(y 1, x, a)$ or calc 6:dydx and $x=a$	Instant Rate of Change

6. Find the derivatives of different regressions using rules at $\mathrm{x}=\mathrm{x} 1$

Linear Regression $y 1=a x+b$	$y^{\prime}=a$	$y^{\prime}(x 1)=$
Quadratic Regression $y 2=a x^{2}+b x+c$	$y^{\prime}=2 a x+b$	$y^{\prime}(x 1)=$
Cubic Regression $y 3=\mathrm{ax}^{3}+\mathrm{bx}^{2}+c x+d$	$y^{\prime}=3 a x^{2}+2 b x+c$	$y^{\prime}(x 1)=$
Quartic Regression $y 4=a x^{4}+\mathrm{bx}^{3}+\mathrm{cx}^{2}+d x+e$	$y^{\prime}=4 a x^{3}+3 b x^{2}+2 c x+d$	$y^{\prime}(x 1)=$

Compaire to $\mathrm{y} 5=\operatorname{nderv}(\mathrm{y} 4, \mathrm{x}, \mathrm{x})$ at $\mathrm{x}=\mathrm{x} 2, \mathrm{x} 3, \mathrm{x} 4$

$\mathrm{X} 2=$	$\mathrm{y} 4^{\prime}(\mathrm{x} 2)=$
$\mathrm{X} 3=$	$\mathrm{y} 4^{\prime}(\mathrm{x} 3)=$
$\mathrm{X} 4=$	$\mathrm{y} 4^{\prime}(\mathrm{x} 4)=$

7. Find the derivatives of different regressions using rules at $\mathrm{x}=\mathrm{x}$ 1

Exponential $\mathrm{y} 6=\mathrm{a}^{*} \mathrm{~b}^{\wedge} \mathrm{x}$	$\mathrm{y}^{\prime}=\mathrm{a}^{*} \mathrm{~b}^{\wedge} \mathrm{x}^{*} \ln (\mathrm{~b})$	$\mathrm{y}^{\prime}(\mathrm{x} 1)=$
Ln Regression $\mathrm{y} 7=\mathrm{aln} \mathrm{x}+\mathrm{b}$	$\mathrm{y}^{\prime}=\mathrm{a} / \mathrm{x}$	$\mathrm{y}^{\prime}(\mathrm{x} 1)=$

Compaire to $\mathrm{y} 8=\operatorname{nderv}(\mathrm{y} 6, \mathrm{x}, \mathrm{x})$ at $\mathrm{x}=\mathrm{x} 2, \mathrm{x} 3, \mathrm{x} 4$

$\mathrm{X} 2=$	$\mathrm{y} 8^{\prime}(\mathrm{x} 2)=$
$\mathrm{X} 3=$	$\mathrm{y} 8^{\prime}(\mathrm{x} 3)=$
$\mathrm{X} 4=$	$\mathrm{y} 8^{\prime}(\mathrm{x} 4)=$

8. .Find the second derivatives of different regressions using rules at $\mathrm{x}=\mathrm{x} 1$

Linear Regression $\mathrm{y} 1=\mathrm{ax}+\mathrm{b}$	$\mathrm{y}^{\prime \prime}=0$	$\mathrm{y}^{\prime \prime}(\mathrm{x} 1)=$
Quadratic Regression $\mathrm{y} 2=\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}$	$\mathrm{y}^{\prime \prime}=2 \mathrm{a}$	$\mathrm{y}^{\prime \prime}(\mathrm{x} 1)=$
Cubic Regression $\mathrm{y} 3=\mathrm{ax}^{3}+\mathrm{bx}^{2}+\mathrm{cx}+\mathrm{d}$	$\mathrm{y}^{\prime \prime}=6 \mathrm{ax}+2 \mathrm{~b}$	$\mathrm{y}^{\prime \prime}(\mathrm{x} 1)=$
Quartic Regression $\mathrm{y} 4=\mathrm{ax}^{4}+\mathrm{bx}^{3}+\mathrm{cx}^{2}+\mathrm{dx}+\mathrm{e}$	$\mathrm{y}^{\prime \prime}=12 \mathrm{ax}^{2}+6 \mathrm{bx}+2 \mathrm{c}$	$\mathrm{y}^{\prime \prime}(\mathrm{x} 1)=$

Compaire to $\mathrm{y} 5=\operatorname{nderv}(\operatorname{nderiv}(\mathrm{y} 4, \mathrm{x}, \mathrm{x}), \mathrm{x}, \mathrm{x})$ at $\mathrm{x}=\mathrm{x} 2, \mathrm{x} 3, \mathrm{x} 4$

$\mathrm{X} 2=$	$\mathrm{y} 4{ }^{\prime} \prime(\mathrm{x} 2)=$
$\mathrm{X} 3=$	$\mathrm{y} 4{ }^{\prime \prime}(\mathrm{x} 3)=$
$\mathrm{X} 4=$	$\mathrm{y} 44^{\prime}(\mathrm{x} 4)=$

9. Make a transformation of your x-values and your y-values

10. Find the derivatives of sine regression using rules at $\mathrm{x}=\mathrm{x} 1$

Sine Regression $y 2=a \sin (b x+c)+d$	$y^{\prime}=a \cos (b x+c) * b$	$y^{\prime}(x 1)=$

Find the second derivatives of sine regression using rules at $\mathrm{x}=\mathrm{x} 1$

Sine Regression $\mathrm{y} 2=\mathrm{asin}(\mathrm{bx}+\mathrm{c})+\mathrm{d}$	$\mathrm{y}^{\prime \prime}=-\mathrm{asin}(\mathrm{bx}+\mathrm{c})^{*} \mathrm{~b}^{\wedge} 2$	$\mathrm{y}^{\prime}(\mathrm{x} 1)=$

OPTIONAL

11. Find the derivatives of the invers sine regression usio evils at end

12. Use the mean value theorem on the two end points OF a regression and identify a point on the graph with a similar slope?
Y1=regEq
Y2=nderiv ($\mathrm{y} 1, \mathrm{x}, \mathrm{x}$)
Y3="average rate of change"
Calc 5:intersect

Regression used:	
Ave Rate of change:	
Point(s) of intersection:	

13. Was the zero found by using Newton's Method for by using $\mathrm{x}=0$ or $\mathrm{x}=1$ as an initial guess?

Y1=cubicregression
0 sto x
x-yl/nderv(y1,x,x)stox
iteration \qquad
iteration \qquad
iteration \qquad
zero:
14. Related rates

OMIT THIS QUESTION

15. Graph the cubic or quartic regression, identify all critical points, concavity, and inflection points.

X:									
Y'									
Increasing or Deceasing									
Y"									
Concavity? Up or Down									

16.

Find $y^{\prime}=0$ to identify critical values a1,a2

Critical
Points

Find y'(a1) and y"(a2) to determine max/min

Y'' at	
critical	
Points	
Max or	
Min	

17. Find y ' $=0$ to identify inflection points Did the student take the second derivative and identify concavity for the zero of the cubic regression? $Y^{\prime \prime}=0$ at $-b /(6 a)$: \qquad

Inflection
Points

