Chapter 40

2. For a given quantum number n there are n possible values of ℓ , ranging from 0 to n-1. For each ℓ the number of possible electron states is $N_{\ell} = 2(2\ell + 1)$. Thus the total number of possible electron states for a given n is

$$N_n = \sum_{\ell=0}^{n-1} N_\ell = 2\sum_{\ell=0}^{n-1} (2\ell+1) = 2n^2.$$

Thus, in this problem, the total number of electron states is $N_n = 2n^2 = 2(5)^2 = 50$.

6. For a given quantum number ℓ there are $(2 \ell + 1)$ different values of m_{ℓ} . For each given m_{ℓ} the electron can also have two different spin orientations. Thus, the total number of electron states for a given ℓ is given by $N_{\ell} = 2(2 \ell + 1)$.

- (a) Now $\ell = 3$, so $N_{\ell} = 2(2 \times 3 + 1) = 14$.
- (b) In this case, $\ell = 1$, which means $N_{\ell} = 2(2 \times 1 + 1) = 6$.
- (c) Here $\ell = 1$, so $N_{\ell} = 2(2 \times 1 + 1) = 6$.
- (d) Now $\ell = 0$, so $N_{\ell} = 2(2 \times 0 + 1) = 2$.

28. For a given value of the principal quantum number n, there are n possible values of the orbital quantum number ℓ , ranging from 0 to n-1. For any value of ℓ , there are $2\ell+1$ possible values of the magnetic quantum number m_ℓ , ranging from $-\ell$ to $+\ell$. Finally, for each set of values of ℓ and m_ℓ , there are two states, one corresponding to the spin quantum number $m_s=-\frac{1}{2}$ and the other corresponding to $m_s=+\frac{1}{2}$. Hence, the total number of states with principal quantum number n is

$$N = 2\sum_{\ell=0}^{n-1} (2\ell+1).$$

Now

$$\sum_{\ell=0}^{n-1} 2\ell = 2\sum_{\ell=0}^{n-1} \ell = 2\frac{n}{2}(n-1) = n(n-1),$$

since there are n terms in the sum and the average term is (n-1)/2. Furthermore,

1516 *CHAPTER 40*

$$\sum_{\ell=0}^{n-1} 1 = n .$$

Thus $N = 2 n(n-1) + n = 2n^2$.

30. When a helium atom is in its ground state, both of its electrons are in the 1s state. Thus, for each of the electrons, n = 1, $\ell = 0$, and $m_{\ell} = 0$. One of the electrons is spin up $(m_s = +\frac{1}{2})$ while the other is spin down $(m_s = -\frac{1}{2})$. Thus,

- (a) the quantum numbers $(n, \ell, m_{\ell}, m_{s})$ for the spin-up electron are $(1,0,0,\pm 1/2)$, and
- (b) the quantum numbers $(n, \ell, m_{\ell}, m_{\epsilon})$ for the spin-down electron are (1,0,0,-1/2).
- 52. The energy of the laser pulse is

$$E_p = P\Delta t = (2.80 \times 10^6 \text{ J/s})(0.500 \times 10^{-6} \text{ s}) = 1.400 \text{ J}.$$

Since the energy carried by each photon is

$$E = \frac{hc}{\lambda} = \frac{(6.63 \times 10^{-34} \text{ J} \cdot \text{s})(2.998 \times 10^8 \text{ m/s})}{424 \times 10^{-9} \text{ m}} = 4.69 \times 10^{-19} \text{ J},$$

the number of photons emitted in each pulse is

$$N = \frac{E_p}{E} = \frac{1.400 \text{J}}{4.69 \times 10^{-19} \text{ J}} = 3.0 \times 10^{18} \text{ photons.}$$

With each atom undergoing stimulated emission only once, the number of atoms contributed to the pulse is also 3.0×10^{18} .

55. (a) If t is the time interval over which the pulse is emitted, the length of the pulse is

$$L = ct = (3.00 \times 10^8 \text{ m/s})(1.20 \times 10^{-11} \text{ s}) = 3.60 \times 10^{-3} \text{ m}.$$

(b) If E_p is the energy of the pulse, E is the energy of a single photon in the pulse, and N is the number of photons in the pulse, then $E_p = NE$. The energy of the pulse is

$$E_p = (0.150 \text{ J})/(1.602 \times 10^{-19} \text{ J/eV}) = 9.36 \times 10^{17} \text{ eV}$$

and the energy of a single photon is $E = (1240 \text{ eV} \cdot \text{nm})/(694.4 \text{ nm}) = 1.786 \text{ eV}$. Hence,

$$N = \frac{E_p}{E} = \frac{9.36 \times 10^{17} \text{ eV}}{1.786 \text{ eV}} = 5.24 \times 10^{17} \text{ photons.}$$

65. (a) Using $hc = 1240 \text{ eV} \cdot \text{nm}$,

$$\Delta E = hc \left(\frac{1}{\lambda_1} - \frac{1}{\lambda_2} \right) = (1240 \,\text{eV} \cdot \text{nm}) \left(\frac{1}{588.995 \,\text{nm}} - \frac{1}{589.592 \,\text{nm}} \right) = 2.13 \,\text{meV} \ .$$

(b) From $\Delta E = 2\mu_B B$ (see Fig. 40-10 and Eq. 40-18), we get

$$B = \frac{\Delta E}{2\mu_B} = \frac{2.13 \times 10^{-3} \text{ eV}}{2(5.788 \times 10^{-5} \text{ eV/T})} = 18 \text{ T}.$$

71. The principal quantum number n must be greater than 3. The magnetic quantum number m_{ℓ} can have any of the values -3, -2, -1, 0, +1, +2, or +3. The spin quantum number can have either of the values $-\frac{1}{2}$ or $+\frac{1}{2}$.