Chapter 33

1. Since $\Delta \lambda \ll \lambda$, we find Δf is equal to

$$\left| \Delta \left(\frac{c}{\lambda} \right) \right| \approx \frac{c \Delta \lambda}{\lambda^2} = \frac{(3.0 \times 10^8 \text{ m/s})(0.0100 \times 10^{-9} \text{ m})}{(632.8 \times 10^{-9} \text{ m})^2} = 7.49 \times 10^9 \text{ Hz}.$$

34. In this case, we replace $I_0 \cos^2 70^\circ$ by $\frac{1}{2}I_0$ as the intensity of the light after passing through the first polarizer. Therefore,

$$I_f = \frac{1}{2}I_0 \cos^2(90^\circ - 70^\circ) = \frac{1}{2}(43 \text{ W/m}^2)(\cos^2 20^\circ) = 19 \text{ W/m}^2.$$

45. Note that the normal to the refracting surface is vertical in the diagram. The angle of refraction is $\theta_2 = 90^{\circ}$ and the angle of incidence is given by $\tan \theta_1 = L/D$, where D is the height of the tank and L is its width. Thus

$$\theta_1 = \tan^{-1} \left(\frac{L}{D} \right) = \tan^{-1} \left(\frac{1.10 \text{ m}}{0.850 \text{ m}} \right) = 52.31^{\circ}.$$

The law of refraction yields

$$n_1 = n_2 \frac{\sin \theta_2}{\sin \theta_1} = (1.00) \left(\frac{\sin 90^\circ}{\sin 52.31^\circ} \right) = 1.26,$$

where the index of refraction of air was taken to be unity.

47. The law of refraction states

$$n_1 \sin \theta_1 = n_2 \sin \theta_2$$
.

We take medium 1 to be the vacuum, with $n_1 = 1$ and $\theta_1 = 32.0^\circ$. Medium 2 is the glass, with $\theta_2 = 21.0^\circ$. We solve for n_2 :

$$n_2 = n_1 \frac{\sin \theta_1}{\sin \theta_2} = (1.00) \left(\frac{\sin 32.0^{\circ}}{\sin 21.0^{\circ}} \right) = 1.48.$$

57. Reference to Fig. 33-24 may help in the visualization of why there appears to be a "circle of light" (consider revolving that picture about a vertical axis). The depth and the

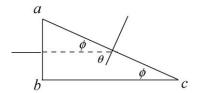
1272 *CHAPTER 33*

radius of that circle (which is from point a to point f in that figure) is related to the tangent of the angle of incidence. Thus, the diameter D of the circle in question is

$$D = 2h \tan \theta_c = 2h \tan \left[\sin^{-1} \left(\frac{1}{n_w} \right) \right] = 2(80.0 \text{ cm}) \tan \left[\sin^{-1} \left(\frac{1}{1.33} \right) \right] = 182 \text{ cm}.$$

58. The critical angle is
$$\theta_c = \sin^{-1}\left(\frac{1}{n}\right) = \sin^{-1}\left(\frac{1}{1.8}\right) = 34^{\circ}$$
.

59. (a) No refraction occurs at the surface ab, so the angle of incidence at surface ac is $90^{\circ} - \phi$, as shown in the figure below.



For total internal reflection at the second surface, $n_g \sin(90^\circ - \phi)$ must be greater than n_a . Here n_g is the index of refraction for the glass and n_a is the index of refraction for air. Since $\sin(90^\circ - \phi) = \cos \phi$, we want the largest value of ϕ for which $n_g \cos \phi \ge n_a$. Recall that $\cos \phi$ decreases as ϕ increases from zero. When ϕ has the largest value for which total internal reflection occurs, then $n_g \cos \phi = n_a$, or

$$\phi = \cos^{-1}\left(\frac{n_a}{n_g}\right) = \cos^{-1}\left(\frac{1}{1.52}\right) = 48.9^{\circ}.$$

The index of refraction for air is taken to be unity.

(b) We now replace the air with water. If $n_w = 1.33$ is the index of refraction for water, then the largest value of ϕ for which total internal reflection occurs is

$$\phi = \cos^{-1}\left(\frac{n_w}{n_g}\right) = \cos^{-1}\left(\frac{1.33}{1.52}\right) = 29.0^{\circ}.$$