Chapter 14

2. The magnitude F of the force required to pull the lid off is $F = (p_o - p_i)A$, where p_o is the pressure outside the box, p_i is the pressure inside, and A is the area of the lid. Recalling that $1N/m^2 = 1$ Pa, we obtain

$$p_i = p_o - \frac{F}{A} = 1.0 \times 10^5 \text{ Pa} - \frac{480 \text{ N}}{77 \times 10^{-4} \text{ m}^2} = 3.8 \times 10^4 \text{ Pa}.$$

5. The pressure difference between two sides of the window results in a net force acting on the window.

The air inside pushes outward with a force given by p_iA , where p_i is the pressure inside the room and A is the area of the window. Similarly, the air on the outside pushes inward with a force given by p_oA , where p_o is the pressure outside. The magnitude of the net force is $F = (p_i - p_o)A$. With 1 atm = 1.013 × 10⁵ Pa, the net force is

$$F = (p_i - p_o)A = (1.0 \text{ atm} - 0.96 \text{ atm})(1.013 \times 10^5 \text{ Pa/atm})(3.4 \text{ m})(2.1 \text{ m})$$

= $2.9 \times 10^4 \text{ N}$.

6. Knowing the standard air pressure value in several units allows us to set up a variety of conversion factors:

(a)
$$P = (28 \text{ lb/in.}^2) \left(\frac{1.01 \times 10^5 \text{ Pa}}{14.7 \text{ lb/in}^2} \right) = 190 \text{ kPa}.$$

(b)
$$(120 \text{ mmHg}) \left(\frac{1.01 \times 10^5 \text{ Pa}}{760 \text{ mmHg}} \right) = 15.9 \text{ kPa}, \quad (80 \text{ mmHg}) \left(\frac{1.01 \times 10^5 \text{ Pa}}{760 \text{ mmHg}} \right) = 10.6 \text{ kPa}.$$

- 11. The hydrostatic blood pressure is the gauge pressure in the column of blood between feet and brain. We calculate the gauge pressure using Eq. 14-7.
- (a) The gauge pressure at the brain of the giraffe is

$$p_{\text{brain}} = p_{\text{heart}} - \rho g h = 250 \text{ torr} - (1.06 \times 10^3 \text{ kg/m}^3)(9.8 \text{ m/s}^2)(2.0 \text{ m}) \frac{1 \text{ torr}}{133.33 \text{ Pa}}$$

= 94 torr.

(b) The gauge pressure at the feet of the giraffe is

612 *CHAPTER 14*

$$p_{\text{feet}} = p_{\text{heart}} + \rho g h = 250 \text{ torr} + (1.06 \times 10^3 \text{ kg/m}^3)(9.8 \text{ m/s}^2)(2.0 \text{ m}) \frac{1 \text{ torr}}{133.33 \text{ Pa}} = 406 \text{ torr}$$
$$\approx 4.1 \times 10^2 \text{ torr}.$$

(c) The increase in the blood pressure at the brain as the giraffe lowers its head to the level of its feet is

$$\Delta p = p_{\text{feet}} - p_{\text{brain}} = 406 \text{ torr} - 94 \text{ torr} = 312 \text{ torr} \approx 3.1 \times 10^2 \text{ torr}.$$

17. The pressure p at the depth d of the hatch cover is $p_0 + \rho g d$, where ρ is the density of ocean water and p_0 is atmospheric pressure. Thus, the gauge pressure is $p_{\text{gauge}} = \rho g d$, and the minimum force that must be applied by the crew to open the hatch has magnitude $F = p_{\text{gauge}} A = (\rho g d) A$, where A is the area of the hatch.

Substituting the values given, we find the force to be

$$F = p_{\text{gauge}} A = (\rho g d) A = (1024 \text{ kg/m}^3)(9.8 \text{ m/s}^2)(100 \text{ m})(1.2 \text{ m})(0.60 \text{ m})$$
$$= 7.2 \times 10^5 \text{ N}.$$

35. The problem intends for the children to be completely above water. The total downward pull of gravity on the system is

$$3(356 \,\mathrm{N}) + N \rho_{\mathrm{wood}} gV$$

where N is the (minimum) number of logs needed to keep them afloat and V is the volume of each log:

$$V = \pi (0.15 \text{ m})^2 (1.80 \text{ m}) = 0.13 \text{ m}^3.$$

The buoyant force is $F_b = \rho_{\text{water}} g V_{\text{submerged}}$, where we require $V_{\text{submerged}} \leq NV$. The density of water is 1000 kg/m³. To obtain the minimum value of N, we set $V_{\text{submerged}} = NV$ and then round our "answer" for N up to the nearest integer:

$$3(356 \,\mathrm{N}) + N \rho_{\mathrm{wood}} gV = \rho_{\mathrm{water}} gNV \implies N = \frac{3(356 \,\mathrm{N})}{gV \left(\rho_{\mathrm{water}} - \rho_{\mathrm{wood}}\right)}$$

which yields $N = 4.28 \rightarrow 5 \log s$.

37. For our estimate of $V_{\text{submerged}}$ we interpret "almost completely submerged" to mean

$$V_{\text{submerged}} \approx \frac{4}{3}\pi r_o^3$$
 where $r_o = 60 \text{ cm}$.

Thus, equilibrium of forces (on the iron sphere) leads to

$$F_b = m_{\text{iron}} g \implies \rho_{\text{water}} g V_{\text{submerged}} = \rho_{\text{iron}} g \left(\frac{4}{3} \pi r_o^3 - \frac{4}{3} \pi r_i^3 \right)$$

where r_i is the inner radius (half the inner diameter). Plugging in our estimate for $V_{\text{submerged}}$ as well as the densities of water (1.0 g/cm³) and iron (7.87 g/cm³), we obtain the inner diameter:

$$2r_i = 2r_o \left(1 - \frac{1.0 \text{ g/cm}^3}{7.87 \text{ g/cm}^3} \right)^{1/3} = 57.3 \text{ cm}.$$

41. Let V_i be the total volume of the iceberg. The non-visible portion is below water, and thus the volume of this portion is equal to the volume V_f of the fluid displaced by the iceberg. The fraction of the iceberg that is visible is

frac =
$$\frac{V_i - V_f}{V_i} = 1 - \frac{V_f}{V_i}$$
.

Since iceberg is floating, Eq. 14-18 applies:

$$F_g = m_i g = m_f g \implies m_i = m_f$$
.

Since $m = \rho V$, the above equation implies

$$\rho_i V_i = \rho_f V_f \implies \frac{V_f}{V_i} = \frac{\rho_i}{\rho_f}.$$

Thus, the visible fraction is

$$\operatorname{frac} = 1 - \frac{V_f}{V_i} = 1 - \frac{\rho_i}{\rho_f} .$$

(a) If the iceberg ($\rho_i = 917 \text{ kg/m}^3$) floats in salt water with $\rho_f = 1024 \text{ kg/m}^3$, then the fraction would be

frac =
$$1 - \frac{\rho_i}{\rho_f} = 1 - \frac{917 \text{ kg/m}^3}{1024 \text{ kg/m}^3} = 0.10 = 10\%$$
.

(b) On the other hand, if the iceberg floats in fresh water ($\rho_f = 1000 \text{ kg/m}^3$), then the fraction would be

frac =
$$1 - \frac{\rho_i}{\rho_f} = 1 - \frac{917 \text{ kg/m}^3}{1000 \text{ kg/m}^3} = 0.083 = 8.3\%$$
.