
J is for Work

When there is an angle between F and x

$$W = (F\cos\theta) \Delta x$$

▶ SI Unit

1 Joule (J) = 1 N m = 1 kg
$$m^2/s^2$$

Calorie

- ▶ 1 calorie = 4.186 J
- ▶ 1 Calorie = 1000 calorie

Kinetic Energy

- What's kinetic energy of a bullet?
- Mass = 50 g
- Velocity = 400 m/s

•
$$KE = \frac{1}{2} \text{ mv}^2$$

SI Unit: $1J = 1 \text{ kg m}^2/\text{s}^2$

Energy in food

Does a bag of snack contains more or less energy?

Work-Energy Theorem

The net work done on an object is equal to the change in the object's kinetic energy.

$$W_{net} = \frac{1}{2} mv^2 - \frac{1}{2} mv_0^2$$

Friction does dissipative work

When a car brakes, where did the kinetic energy go?

$$-f \Delta x = EK_f - EK_i$$

Road Accident Reconstruction

Plainsboro Police Sargent John Brensnon

Braking

A 1000 kg car is moving at 11.17m/s. What is it's kinetic energy?

If the car is brought to a full stop through friction. How much work is done by friction?

Gravitational Potential Energy

- Object near earth surface
- Mass: m
- Height: y

$$PE = mgy$$

SI Units

1 Joule (J) = 1 kg m^2/s^2

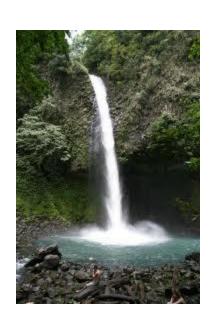
Conservation of Mechanical Energy

 (Condition) If an object has only gravitational force doing work, (Law) its mechanical energy is conserved.

$$\frac{1}{2}$$
 mv₁² + mgy₁

=

$$\frac{1}{2} \text{ mv}_2^2 + \text{mgy}_2$$


What's wrong here?

An object's kinetic energy is always conserved.

$$\frac{1}{2}$$
 mv₁ + mgy₁

=

 $\frac{1}{2}$ mv₂ + mgy₂

What's wrong here?

 (Condition) If an object has only gravitational force doing work, (Law) its mechanical energy is conserved.

$$mv_1^2 + mgy_1$$

$$mv_2^2 + mgy_2$$

What is wrong here?

 (Condition) If an object has only gravitational force doing work, (Law) its mechanical energy is conserved.

$$\frac{1}{2} \text{ mv}_{1}^{2} + \text{mgy}_{1}^{2}$$

$$\frac{1}{2} \text{ mv}_2^2 + \text{mgy}_2^2$$

Slide

Motion Studied

MOTION	MATH DESCRIPTION	
1-D Motion w CONSTANT velocity	v = const $\Delta x = vt$	
1-D Motion w. CONSTANT acceleration (Free Fall)	a = const $v = v_0 + at$; $\Delta x = v_0 t + \frac{1}{2} at^2$ $a = g = 9.8 \text{ m/s}^2$ pointing down	
2–D motion	X	Y
Newton's Laws	$Fnet = 0$ $Fnet = ma$ $F_{12} = -F_{21}$	
Conservation of Energy (ONLY gravity does work)	$KE_1 + mgy_1 = KE_2 + mgy_2$	

Two Objects

Newton's Law applies to the center of mass

Collisions

- 1. Contact of two objects m₁, m₂
- 2. during small time period t
- 3. With large Force **F**

Momentum and Impulse

The Linear Momentum and Impulse

$$P = mv$$

$$I = F \Delta t$$

SI Units

$$1 \text{kg m/s} = 1 \text{ N s}$$

Impulse Momentum Theorem

(Condition) for a collision process

$$I = P_f - P_i$$

$$F \Delta t = m (v_f - v_i)$$

Dynamics - how force change motion

Impulse – Momentum Theorem (short Δt) $F_{ave} \Delta t = P_f - P_i$

Work – Energy Theorem (sizable time period) $F_{net} \Delta x = KE_f - KE_i$

Newton's Second Law (instantaneous moment) F = ma

Conservation of Momentum

When no net external force acts on a system, the total momentum of the system remains constant in time.

$$\mathbf{m}_1 \mathbf{v}_{1i} + \mathbf{m}_2 \mathbf{v}_{2i} = \mathbf{m}_1 \mathbf{v}_{1f} + \mathbf{m}_2 \mathbf{v}_{2f}$$

Analyze Collision Problems

(Draw a diagram)

<u>m</u>
 <u>1</u>

 $\underline{m}_{\underline{2}}$

(kg)

V_{1i}

 V_{2i}

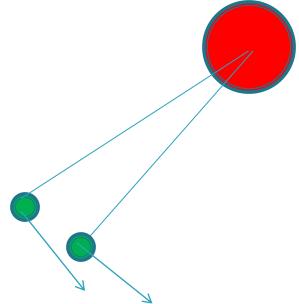
(+/-; 0 implied)

V_{1f}

 V_{2f}

 $(v_{1f} = v_{2f})$

Collisions


- Elastic Both momentum and kinetic energy are conserved.
- Inelastic
 Perfectly inelastic
 Momentum is conserved, but kinetic energy is not.

Rocket Propulsion

- What's being a rocket scientist is about?
- Newton's 3rd Law
- Conservation of Momentum
- Simplest Case: rocket (M) with one fuel pocket(Δm) with exhaust velocity of v_e .

Angular Motion

Sun and earth

 $\Delta\theta = +15$ degrees

How long does it take the earth to rotate 15 degrees around the sun? How fast does the earth rotate around the sun?

Angular Motion

Compare with Linear Motion

	Linear Motion	Angular Motion
displacement	Δx meters (m)	$\Delta \theta$ radian
velocity	$v = \Delta x / \Delta t$ m/s	$\omega = \Delta\theta/\Delta t$ $\omega = d\theta/dt$ rad/s
acceleration	$a = \Delta v / \Delta t$ m/s^2	$\alpha = \Delta\omega/\Delta t$ $\alpha = d\omega/dt$ rad/s^2

Relations between angular and linear quantities

Linear distance

$$s = r \theta$$

Linear velocity

$$v = r\omega$$

Linear acceleration

$$a = r \alpha$$

Equations of Motion

Linear Motion	Angular Motion
Motion with const. velocity $\Delta x = vt$	Motion with const. angular velocity $\Delta\theta = \omega t$
Motion with const. acceleration $ v=v_0+at \\ \Delta x=v_0t+1/2at^2 \\ v^2=v_0^2+2a\Delta x $	Motion with const. acceleration $\omega=\omega_0+at$ $\Delta\theta=\omega_0t+1/2\alpha t^2$ $\omega^2=\omega_0^2+2\alpha\Delta\theta$
Free Fall a = g = 9.8 m/s ²	

Rotational Motion

- Particles
 - moving in 3–D space

- Sizable objects
 - moving in 3–D space
 - rotation

Kinetic Energy

Motion	Energy
Translation	$KE = \frac{1}{2} mv^2$
Rotation	$KE = \frac{1}{2} I\omega^2$
Vibration	

Equilibrium

image source: shutter stock

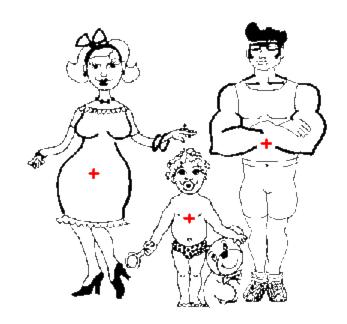
Torque

Is the door knob always at the far end from the hinge?

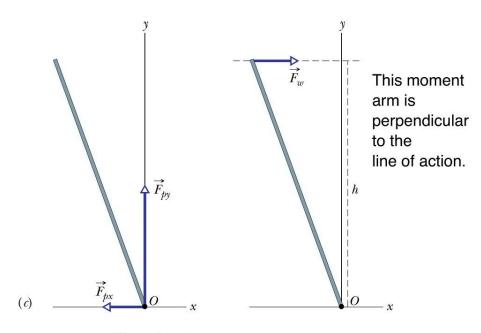
Torque

$$\tau = rFsin\theta$$

SI Units:


Newton meter (N m)

Is this crib safe?


Center of Gravity

The gravitational force on a body effectively act on a single point.

http://spot.pcc.edu/

O is for rotational axis

Choosing the rotation axis here eliminates the torques due to these forces.

Copyright © 2011 John Wiley & Sons, Inc. All rights reserved.

halliday_9e_fig_12_05c

I is for Moment of Inertia

$$I = \sum mr^2$$

$$\tau = I\alpha$$

$$KE_r = \frac{1}{2}I\omega^2$$

$$L = I\omega$$

Dynamics

Translation	Rotation
F = ma	$\tau = I \alpha$