#### **Newtonian Gravitation**

Attraction

$$F = G m_1 m_2 / r^2$$

Constant of universal gravitation

$$G = 6.673 * 10^{-11} kg^{-1}m^3s^{-2}$$

#### **Rotational Motion**

- Particles
  - moving in 3-D space

- Sizable objects
  - moving in 3-D space
  - rotation

# Kinetic Energy

| Motion      | Energy                          |
|-------------|---------------------------------|
| Translation | $KE = \frac{1}{2} \text{ mv}^2$ |
| Rotation    | $KE = \frac{1}{2} I\omega^2$    |
| Vibration   |                                 |

Equilibrium



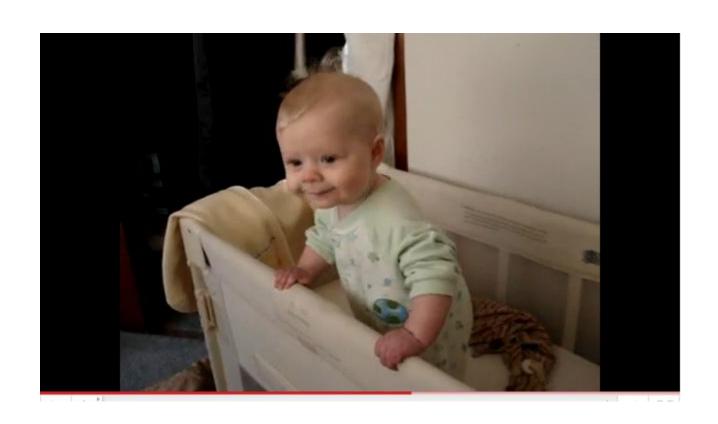




image source: shutter stock

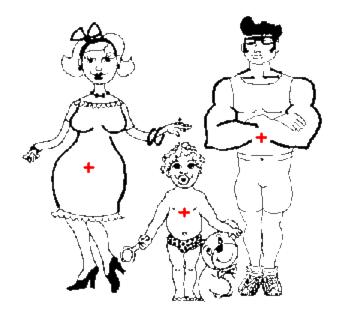
## Torque

 Is the door knob always at the far end from the hinge?


Torque

$$\tau = rFsin\theta$$

• SI Units:


Newton meter (N m)

### Is this crib safe?

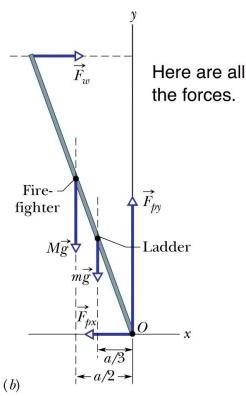


## Center of Gravity

 The gravitational force on a body effectively act on a single point.



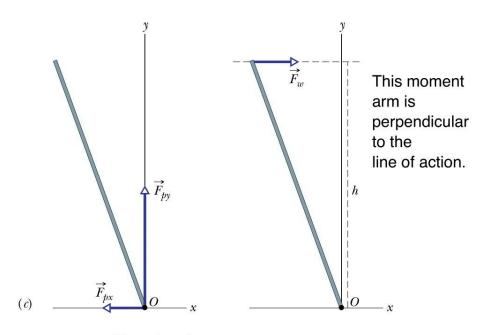
http://spot.pcc.edu/


## **Equilibrium Conditions**

• Force 
$$F_{net,x} = 0$$
  $F_{net,y} = 0$   $F_{net,z} = 0$ 

$$\tau_{net,x} = 0$$
 
$$\mathsf{Torque}_{net,y} = 0$$
 
$$\tau_{net,z} = 0$$




# Force Analysis



Copyright © 2011 John Wiley & Sons, Inc. All rights reserved.

halliday\_9e\_fig\_12\_05b

### O is for rotational axis



Choosing the rotation axis here eliminates the torques due to these forces.

Copyright © 2011 John Wiley & Sons, Inc. All rights reserved.

halliday\_9e\_fig\_12\_05c

### I is for Moment of Inertia

$$I = \sum mr^2$$

$$\tau = I\alpha$$

$$KE_r = \frac{1}{2}I\omega^2$$

$$L = I\omega$$

### Conservation of Anglular Momentum

Condition

$$\tau = 0$$

• Angular Momentum remains constant