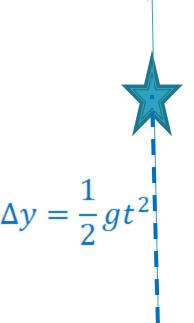
Read Read

Read between the lines

Develop a picture/diagram

Analyze the problem


1-D Motion Concepts

Basic Concepts	Units	Definition
Position	m	X
Displacement	m	$\Delta x = x_f - x_i$
Velocity	m/s	Average $v_{ave} = \Delta x / \Delta t$ Instantaneous $v = \lim_{t \to 0} \frac{\Delta x}{\Delta t} = \frac{dx}{dt}$
Acceleration	m/s ²	Average $a_{ave} = \Delta v / \Delta t$ Instantaneous $a = \lim_{t \to 0} \frac{\Delta v}{\Delta t} = \frac{dv}{dt}$

1-Dimensional Motion: 2 models

Constant Velocity	Constant acceleration
Δx v Δt	$egin{array}{cccc} \Delta x & & & & & & & & & & & & & & & & & &$
$v = \frac{\Delta x}{\Delta t}$	$v = \Delta x$
	$v = v_0 + at$ $\Delta x = v_0 t + \frac{1}{2} a t^2$ $v^2 = v_0^2 + 2a \Delta x$

Projectile Motion in 2D: 2=1+1

$$\Delta x = v_{0x}t$$

Motion Description

	1-D	2-D	3D
	Ā	$\overline{OA} = (2,3)$	a a az y
Time	t	t	t
Displacement	Δχ	Δx Δy	Δx Δy Δz
Velocity	V	$\mathbf{v_x}$ $\mathbf{v_y}$	V_X V_y V_z
Acceleration	a	a _x a _y	a _x a _y a _z

Projectile Motion

X (No y)	Y (No x)
t V_{ox} ΔX	$t \\ v_{oy} \\ v_{y} \\ \Delta y \\ a = -9.8 \text{ m/s}^{2}$
1D, constant velocity	1D, constant acceleration