INTRODUCTION AND MATH OVERVIEW

SCIENTIFIC NOTATION

Students need to know how to perform the following calculations on a calculator. For multi-step calculations, keep all digits of intermediate results and round off only the final answer.

$$6 * 10^{24} * 3.45 =$$
 $6.02*10^{23} * 1.5 =$

$$2.3*6.7*10^{-4} =$$

$$\frac{3.24 \times 10^{-21}}{9.1 \times 10^{-31}} =$$

$$\frac{3.24 \times 10^{-21}}{9.1 \times 10^{-31} \times 2.0 \times 10^{-4}} =$$

UNIT CONVERSION

25 miles = _____ meters

1 hour = ____ seconds

25 miles/hour = ____ meters/second

Discuss speed limits in residential areas.

•

TRIGONOMETRY

Go to the appendix for trigonometry review.

GRAPH

Students will learn to construct graphes and perform data analysis. The follow table lists time and distance data. Graph on Excel the following three graphs. Each graph should have title, subtitle, names of lab partners, labels for both x-axis and y axis.

Time t (seconds)	Distance x (meters)
1	1
2	4
3	9

Distance as a function of time, x(t) - use x as the vertical axis.

Distance as a function of square of time, $x(t^2)$ – use x as the vertical axis.

Time as a function of distance, t(x) – use t as the vertical axis.

APPLICATION OF ALGEBRA IN PHYSICS

Algebra is used in solving most of the problems in this course. However, the application may seem different than the typical problems in the algebra class. In mathematics, symbols x, y, z are usually used for unknowns; symbols a, b, c are usually used for constants. In physics,

1. All letters can be used as unknowns or constants. Displacement can be Δy or Δx .

- 2. A letter with a subscript is usually used to represent a particular property. Here v_0 represent the velocity at time t=0.
- 3. Symbols for physical properties are case sensitive. M and m are different properties.

Solve the following equations. Notice the way symbols are used to represent different properties..

1. There are four variables in the following equation. Solve for v.

$$v^2 = v_0^2 + 2g\Delta y$$

Use $v_0=0$, g=-9.8, and $\Delta y=-1.00*10^3$.

Answer the following questions before starting the calculation.

What variables are there in this equations?	
What are the unknown quantities?	
What variables are known quantities?	
We may solve for only one unknown in one equation. Is this the case?	

2. Solve the quadratic equation:

$$y = -4.90 t^2$$

Use y = $-1.00 * 10^{2}$ m. Solve for t

3. Solve for a as a function of M, m, g using the following set of linear equations:

$$\begin{cases}
Mg - T = Ma \\
T - Mg = ma
\end{cases}$$

What variables are there in this equations?	
What are the unknown quantities?	
What variables are known quantities?	
We may solve for one unknown in one equation or two in two equations. Is this	
the case?	

CALCULUS (OPTIONAL)

This is for students who have completed Calculus I. Give the first order derivative of the following functions with respect to t.

 $y(t) = v_0 t + \frac{1}{2} a t^2$, where v_0 and a are constants.

v(t) = 5.5 t

 $y(t) = sin (2\pi ft + \theta_0)$, where f and θ_0 are constants.

THEORY

1.	All measurement Length Mass Time	results need units. Wha	t are the SI base units	for the following propert	ies?
2.	What are the unit	s for volume? List what	you know and comple	te the following conversi	on.
	1 m ³ =	c.c. (cub	ic centimeter, or cm ³)		
	1 m ³ =	ml			
3.	Write down the no 0.56 m 0.560 m 0.5603 m	umber of significant digi	ts in the following mea	surements. Which one i	is most accurate?
SIZE AND MASS OF A BALL					
	Measurement	Diameter Value	Unit	Mass	Unit
	1				
	2				
	3				
Ave	erage measured dia	meter =	(remi	nder: value & unit)	
Ave	erage measured ma	ss =	(remind	er: value & unit)	

HEIGHT OF A BALL

Measurement	Height value	Unit
1		
2		
3		

Average height = _____

TIME OF FLIGHT

Measurement	Time Value	Unit	
1			
2			
3			
Average time =			