Digestive System
Chapter 22

= Gastrointestinal (GI) tract or ______________________ plus accessory organs

Module 22.1: Overview of the Digestive System

INTRODUCTION

Digestive system
– breaks down food into nutrients that can be absorbed by bloodstream and delivered to body cells in useable form
= GI tract or alimentary canal and ______________

• Alimentary canal
– continuous tube consisting of __________(mouth), pharynx, esophagus, stomach, small intestine, and __________
• Accessory organs
– located around alimentary canal and assist in digestion in someway
- include teeth, tongue, salivary glands, liver, ______________

BASIC DIGESTIVE FUNCTIONS AND PROCESSES

Functions:
1. __________, break it down into its component nutrients to be used by body cells
2. ________________, and acid-base homeostasis
3. Ingest vitamins and minerals, produce hormones, excrete wastes

• Main processes include:
 1. **Ingestion** – bring food and water into mouth
 2. **Secretion** – mucus, enzymes, acid, and hormones
 3. __________ – via peristalsis
 4. **Digestion** – mechanical and chemical
 5. __________ – through wall of alimentary canal into blood or lymph
6. **Defecation** – eliminate waste products

REGULATION OF MOTILITY BY NERVOUS AND ENDOCRINE SYSTEMS

Motility - key process in *every* region of alimentary canal
- Oral cavity, pharynx, superior esophagus, and last portion of L.I. - ____________
- Remainder of alimentary canal - ____________

Types: *mixing* & *churning*, *propulsion*

Regulation:

1. **Nervous** ANS: SNS inhibits
 PSN stimulates

2. **Endocrine** hormones – stimulate or inhibit

HISTOLOGY OF THE ALIMENTARY CANAL

- ____________ = concentric layers of tissue surround a space
- 4 main layers:
 1. ____________ - epithelium
 2. **Submucosa** – CT
 3. **Muscularis externa** - smooth muscle
 4. **Serosa** (or______________) - CT & epithelium

- **Mucosa:**
 a. epithelium – ________________ or stratified squamous
 goblet cells → mucus
 b. lamina propria - CT
 c. muscularis mucosae – SMC

- ____________
 – *dense irregular CT*, with blood vessels and submucosal glands
 – **submucosal plexus** *(Meissner’s plexus)*
 regulate secretions

- **Muscularis externa**
 - inner circular SMC
- outer longitudinal SMC
 - __________________(Auerbach’s plexus)
 regulate motility

• **Serosa** = ________________
 - within peritoneal cavity
 - simple squam. epithelium & loose CT
 or

• **Adventitia**
 - outside peritoneal cavity
 - dense irregular CT

ORGANIZATION OF ABDOMINOPELVIC ORGANS

• **Peritoneal membranes:**
 – Outer **parietal peritoneum**
 - < peritoneal cavity- serous fluid>
 – Inner **visceral peritoneum (serosa)**

• **Mesenteries**
 - Folds of visceral peritoneum between loops of intestines
 - __________________ “fatty apron” : hangs from base of stomach
 - **Lesser Omentum** : lesser curvature of stomach to liver

Peritonitis

Peritonitis = *inflammation* of peritoneum

• Results when blood or contents of an abdominal organ leak into peritoneal cavity; usually due to *trauma*; often involves a bacterial infection

• Treatment for peritonitis may involve
Module 22.2: THE ORAL CAVITY, PHARYNX, AND ESOPHAGUS

INTRODUCTION

Oral cavity (*mouth*)
- posterior to teeth and bounded by cheeks
- lined with *stratified squamous nonkeratinized epithelial*.

- beginning of alimentary canal
- accessory organs: ____________________________
- forms _______ = saliva and chewed food

STRUCTURE OF ORAL CAVITY

- Cheeks: ____________________________

- Lips:
 - *orbicularis oris* muscle and covered with ____________________________
 - *labial frenulum*
- Vestibule – space between lips, cheeks and gums
- Gums – __________
- Palate:
 - hard palate (ant. 2/3) = ____________________________
 - soft palate (post. 1/3) = skeletal muscle
 - __________ – prevents food from entering nasal cavity

TEETH AND MASTICATION

Teeth
- organs of mechanical digestion
- Mastication – ________ to increase surface area of food
- Teeth located in bony *sockets* called *alveoli* maxilla and mandible

- Dentition Formula: 3 2 1 4 1 2 3
 - 3 – tricuspids (molars)
 - 2 – bicuspids (premolars)
 - 1 - cuspids (canines)
 - 4 – incisors
• Secondary dentition (32 permanent teeth)
• Tooth structure
 • ___________ – above gum line
 - Enamel – hard mineralized substances
 - Dentin
 • ___________ – below gum line
 - Pulp – blood vessels, nerves

TONGUE

Tongue
– skeletal muscle covered w/ stratified squamous epithelial
- lingual frenulum ________________
- Papillae:
 1. ___________
 2. fungiform
 3. circumvallate
 4. foliate papillae
• All papillae except filiform contain sensory receptors called taste buds

SALIVARY GLANDS

Salivary glands → saliva contains water, enzymes, mucus, and other solutes
1. ________________ (25-30% of saliva)
 → parotid duct
 - located over masseter muscle
2. ________________ (65-70%)
 → submandibular ducts
 - located along mandible
3. ________________ (5%)
 → sublingual ducts
 – situated inferior to tongue
Saliva
- ________________
- ________________, initiates CHO digestion
 - Lysozyme an enzyme that kills bacteria
 - IgA antibody that destroys pathogens
 - Bicarbonate to neutralize acid
 - Parotid glands \(\rightarrow\) water and enzymes
 - Submandibular glands \(\rightarrow\) secrete enzymes, mucus
 - Sublingual glands \(\rightarrow\) secretes mainly mucus, some enzymes.

• **Functions of Saliva:**
 Moistening, lubricating, and cleansing oral mucosa
 - Lysozyme and IgA *deter* growth of bacteria
 - ________________ digestion by moistening and mixing ingested food into a bolus so it can be swallowed
 - ________________ digestion by salivary amylase
 - ________________ in water of saliva to stimulate taste receptors on tongue

PHARYNX

Common passageway for 2 systems:
- extends from internal nares \(\rightarrow\) ________________

Pharynx (throat)
- nasopharynx
- oropharynx
- laryngopharynx

Function of pharynx
• ________________ - bolus passes into esophagus
 - Pharynx is surrounded by three pairs of skeletal muscles: upper, middle, and lower *pharyngeal constrictor muscles*
Tonsils – defend body from pathogens that have entered nasal or oral cavities
1. ___________ tonsils
 - posterior oral cavity on either side of tongue
2. ___________ tonsils
 - located under base of tongue
3. ___________ tonsils
 - located on posterior wall of nasopharynx

Esophagus
- muscular tube about 25 cm (10 in.) long
- posterior to trachea
- transports bolus from pharynx to stomach
- mucosa: lined with ________________
 - muscularis: superior 1/3 skeletal
 - middle 1/3 skeletal & SMC
 - inferior 1/3 ______

Upper esophageal sphincter
- junction of pharynx and esophagus
- modified sphincter

Gastroesophageal sphincter (aka _______________LES
 or cardiac sphincter)
- regulates passage of bolus into stomach; also prevents reflux
 _________________ - opening in diaphragm

• Primary functions of esophagus are _____________________________

• During swallowing, skeletal muscle and smooth muscle of muscularis undergo

• Thick esophageal epithelium protects esophagus from abrasion by food, also prevents absorption
Swallowing or ________________
- specialized type of propulsion that pushes bolus of food from oral cavity through pharynx and esophagus to stomach

1. **Voluntary phase** – tongue pushes bolus posteriorly toward oropharynx
2. ________________ – bolus enters oropharynx
 - soft palate and epiglottis seal off nasopharynx and larynx
 - **swallowing reflex** initiated by medulla
 - all structures (uvula, larynx) move up and epiglottis depresses
3. ________________ – peristaltic waves move bolus down esophagus to stomach

Module 22.3: THE STOMACH

GROSS ANATOMY OF STOMACH

Anatomy

- **greater curvature** – convex left side
- **lesser curvature** - *concave* right side

5 regions:

- Cardia – receives bolus when LES relaxes
- Fundus – upper left domed-shaped
- _______ – largest section
- Pyloric antrum – inferior portion
- ____________ – connects with duodenum via pyloric sphincter

Rugae = ____________________________
HISTOLOGY OF STOMACH

- Stomach
 - same four tissue layers as rest of alimentary canal with modifications:
 - Muscularis externa: additional inner layer of oblique smooth muscle

Chyme –

- Mucosa - indentations to form __________
 Goblet cells ______________

Gastric glands, found at base of gastric pits
 - contain both endocrine cells that secrete hormones and acidic, enzyme-containing fluid called gastric juice

- 4 main cells types:
 1. ___________ cells → hormones
 G cells secrete hormone gastrin stimulates secretions
 2. _________ pepsinogen
 - precursor to enzyme pepsin which begins protein dig.
 3. ___________ hydrochloric acid (HCl)
 → intrinsic factor (req. for absorption of vitamin____)
 4. Mucous neck cells secrete acidic mucus

FUNCTIONS OF STOMACH

Gastric secretions:

HCl

- ___________
- Necessary to convert pepsinogen to pepsin

Mucus

from goblet cells & mucus glands
Pepsinogen

- from parietal cells
- inactive form of pepsin req. for Vit. B12 absorption

Intrinsic factor

Pepsin

- protein splitting enz.

Regulation of Gastric Secretions:

1. ______________________ (30 - 40%)
 - triggered by sight, smell, taste, or thought of food
 - PSN (Vagus n.) triggers gastric juice secretion

2. ______________________ (50 - 60%)
 - triggered by food in stomach
 - gastrin released
 - gastric juice secreted

3. ______________________ (~5%)
 - triggered by food moving into S.I.
 - intestinal gastrin released → secretion of gastric juice

Gastroesophageal Reflux Disease (GERD)

- Gastroesophageal sphincter normally closed except during swallowing;
 When this mechanism *fails*, acid from stomach *regurgitates* into esophagus

- If chronic, it is called *gastroesophageal reflux disease*, or GERD, and may lead to pain, difficulty swallowing, vocal cord damage, respiratory problems, and even *esophageal cancer*

- Multiple factors contribute

- Helicobacter pylori

- Treatment
• **Enterogastric reflex**
 - as chyme enters duodenum, declining pH (more acidic) and presence of lipids trigger enterogastric reflex
 \[\Rightarrow \text{decreases vagal activity and reduces acid secretion} \]

• **Emptying function**

 • Liquids move rapidly

 • Solids must be converted to a *nearly liquid* state before entering S.I.

 • \[\text{__________} \Rightarrow \text{delays gastric emptying}\]

 • Duodenum needs to process incoming chyme
 \(\text{__________} \)

Vomiting

• Occasionally stomach contents move *backward*, an unpleasant process known as *vomiting* (*emesis*)

• Involves a complex motor response during which SMC of stomach and SI *relaxes* while abdominal skeletal muscles and diaphragm *contract* to increase intra-abdominal pressure

• In addition, upper and lower esophageal sphincters *relax*, soft palate *closes off* nasopharynx, and larynx *elevates* so that epiglottis covers glottis

• Can be a response of variety of stimuli:

 • Stimuli activate sensory components of Vagus nerve

 • Drugs that treat vomiting are known as \[\text{__________}\]
Module 22.4: THE SMALL INTESTINES

INTRODUCTION

Small intestine (small bowel)
- 6 meters long (~20 feet)
- secretion, digestion, absorption, and propulsion

3 regions:

1. Duodenum
 • ~25 cm, retroperitoneal, “C” shaped
 • Major duodenal papilla – __________
 • Duodenal (Brunner’s) glands → __________

2. Jejunum
 – middle segment
 ~ 2.5 meters (7.5 feet) in length
 - ________________

3. Ileum
 – final segment, is also intraperitoneal
 ~ 3.6 meters (10.8 feet) in length
 - ________________

STRUCTURE AND FUNCTIONS OF SMALL INTESTINE

Increased surface area for absorption ~400 to 600x:

1. Circular folds or ________________
 - mucosa and submucosa of S.I.
 - ________________ to give enterocytes (S.I. cells)
 more time to absorb nutrients

2. Villi
 layer of enterocytes surrounding blood capillaries and lymphatic vessel
 (______________)

3. Microvilli ________________
 - Modification of plasma membrane of enterocytes
MOTILITY OF SMALL INTESTINE

- Types of movement:
 - **Peristalsis**
 - ________________
 - **Segmentation**
 - ________________

Appendicitis

- Small size of appendix and fact that it is blind-ended cause it to occasionally become blocked, generally by fecal matter
- Bacteria within feces multiply in appendix and cause infection; results in inflammation, a condition known as appendicitis
- Signs and symptoms
- Requires immediate treatment
- Can lead to __________

Module 22.5: THE LARGE INTESTINE

INTRODUCTION

Large intestine (large bowel)

- ~1.5 meters (5 feet) long
- receives material from S. I. not digested or absorbed
- _______________ (mucus), propulsion, defecation
- _______________ and electrolytes
- bacteria mfr. Vitamins
GROSS ANATOMY OF LARGE INTESTINE

L. I. = Cecum, Colon (ascending, transverse, descending, sigmoid), rectum, anus
- Cecum
 - vermiform appendix contains lymphatic nodules
- _______________ – right side
- _______________
- _______________ – left side
- Sigmoid colon

Rectum
Rectal valves - horizontal folds to hold feces in

Anal canal
Internal anal sphincter – _______________
External anal sphincter – _______________

HISTOLOGY OF LARGE INTESTINE

Histological features:
- Mucosa_________ and its cells lack _______________
- Many goblet cells
 → protective and lubricating mucus
- Taeniae coli = _______________
- Haustra = pockets or saccules
- Epiploic appendages
 = _______________

BACTERIA IN LARGE INTESTINE

Normal flora (gut flora)
~ 500 different bacterial species that have symbiotic (_______________) relationship
- Produce Vit. K (_______________)
- Metabolize undigested materials
- Deter growth of pathogens
- Stimulate immune system
MOTILITY OF LARGE INTESTINE AND DEFECATION

- Two main types of motility:

 Segmentation (churning)

Mass movement (mass peristalsis) 3-4 times per day

 - Defecation reflex –
 - __________ of internal & __________ anal sphincters, contraction of SMC

- **Diarrhea**
 - __________, not have enough time to absorb water → produces **watery feces**

- **Constipation**
 - motility __________, too much water absorption and fecal material becomes **hard**

PANCREAS, LIVER, AND GALL BLADDER

INTRODUCTION

- Pancreas, liver, and gallbladder
 - accessory organs
 - __________ secrete a product into a duct to outside of body

PANCREAS

- Pancreas – both endocrine and exocrine functions

 - **Hormones** (pancreatic islets: beta & alpha cells)
 - insulin (__________)
 - glucagon (__________)

 - Pancreatic juice (exocrine) enzymes secreted by __________

- Pancreas
 - left upper quadrant of abdomen
 - 3 regions: ________________
 - Pancreatic duct & accessory duct

- Pancreatic juice
 - Bicarbonate ions
- Pancreatic amylase
- Pancreatic lipase
- Trypsin, chymotrypsin, carboxypeptidase
- Nucleases

Hormonal stimulation of Pancreas & other target tissues
- **Cholecystokinin (CCK)** (duodenum)
 - Inhibits gastric glands
 - Stim. G.B. to release bile
- **Secretin** (duodenum)
 - Increases bile production in Liver
- **GIP**

LIVER AND GALLBLADDER

Liver
- covered by thin CT capsule
 - 4 lobes: right, left, ______________________
 - falciform ligament separates right and left lobes
 - round ligament: remnant of umbilical vein

Liver lobule
- basic unit of liver
 - composed cords of hepatocytes arranged around a central vein → hepatic v. → IVC
 - hepatic sinusoids drain __________________________

Functions of liver
- Hepatocytes → __________________
 - **Nutrient metabolism**
 - **Detoxification** – *detoxifies* substances produced by body, and substances that we eat or drink
– directly excretes bilirubin in bile, antibiotics and other substances liver processes

• Gallbladder
 – small sac on posterior liver
 - CCK triggers contraction of SMC causing release bile into ____________
 - Cystic duct joins with common hepatic duct → ________________
 - hepatopancreatic ampulla through hepatopancreatic (h-p) sphincter
 • CCK causes ____________ of G.B.
 – Relaxation of h-p sphincter

• Secretin stimulates bile production

Module 22.7: NUTRIENT DIGESTION AND ABSORPTION

DIGESTION AND ABSORPTION OF CARBOHYDRATES

Salivary amylase (salivary glands)
 - __________________________
 - inactivated in stomach due to low pH

Pancreatic amylase (exocrine pancreas)
 - picks up CHO digestion in duodenum

Lactase, maltase, sucrase (brush border enz. S.I.)
 - __________________________
 - Lactose → G + galactose
 - Maltose → G + G
 - Sucrose → G + fructose

Lactose Intolerance

• Many adults lack enzyme lactase and as a result cannot digest milk sugar lactose
• Most people produce lactase as infants, but production of enzyme declines as we age
• **Without** lactase, disaccharides such as lactose cannot be absorbed into enterocytes of small intestine
• Lactose intolerance can be managed by *avoiding* lactose-containing foods or by taking **lactase supplements**

DIGESTION AND ABSORPTION OF PROTEINS

Proteins \rightarrow amino acids

Pepsin (stomach)
- Chief cells of gastric glands
- Pepsinogen \rightarrow pepsin (req. pH 2)

 ------------ (activated by brush border enz.)

 - from trypsinogen (pancreas)

------------ (pancreas)

Carboxypeptidase (pancreas)

DIGESTION AND ABSORPTION OF LIPIDS

Triglycerides \rightarrow **------------**

Bile salts cause *emulsification* of lipids

Gastric lipase (stomach)

Pancreatic lipase (pancreas)

------------ (protein-coated lipid pkg.) absorbed into lacteal \rightarrow

 lymphatic circulation \rightarrow thoracic duct \rightarrow Lt. Subclavian vein (blood circulation)

DIGESTION AND ABSORPTION OF NUCLEIC ACIDS

Nucleic acids (DNA, RNA) \rightarrow nucleotides

------------ (pancreas)
• > 9 L. H₂O
 – ~2 L. of water are ingested
 – ~7 L. secreted into alimentary canal

Of the 9 liters, ______ are absorbed into enterocytes of S.I.

– Most of remaining water is absorbed into enterocytes of L.I., leaving only about 0.1 liter of water to be excreted in feces

REVIEW OF HORMONES

<table>
<thead>
<tr>
<th>Source</th>
<th>Function</th>
<th>Target Tissue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gastrin</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>CCK</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Secretin</td>
<td>–</td>
<td></td>
</tr>
</tbody>
</table>