Chapter 4: Histology

Histology – study of normal structures of _____

Tissue:

- a. Discrete population of _____related in structure & function
- b. Have surrounding material: _____(ECM)

Module 4.1: Introduction to Tissues

TYPES OF TISSUES

Four primary tissue types

- a. Epithelial tissues (epithelia)
 - tightly packed sheets of cells with no visible ECM

- glands that *manufacture secretions* (_____) or chemical messengers

b. Connective tissues (CT)

- connect tissues to one another;
- ECM is a prominent feature for most CT with cells scattered throughout

c. Muscle tissues

-

d. Nervous tissues

- consist of cells:
- neurons
- neuroglia

THE EXTRACELLULAR MATRIX

Extracellular matrix

- a. Composed of substances in a liquid, gel, or solid that surround cells
- b. Functions:
 - Provides tissue with strength to resist **tensile** (stretching) and **compressive** forces
 - Directs cells to proper positions within tissue and holds those cells in place
 - Regulates development, mitotic activity, and survival of cells

c. 2 main components

[ground substance & protein fibers]

1) Ground substance

- makes up most of ECM extracellular fluid (ECF or interstitial fluid)
- components:

Macromolecules:

- a. Glycosaminoglycans (GAGs)
 - ex. chondroitin sulfate (cartilage) and hyaluronic acid

b. Proteoglycans

- GAGs bound to a protein core (bottle brush)

c. Cell-adhesion molecules (CAMs)

- made up of different types of glycoproteins
- bind surface proteins

2) Protein fibers

-

- a. Collagen fibers (white, fibrous)
 - 20–25% of all proteins in body
- b. Elastic fibers (yellow)
 - protein elastin surrounded by glycoproteins
- c. Reticular fibers (weblike)
 - meshwork or scaffold that supports cells and ground substance of many tissues

• Protein fibers vital to structural integrity of many tissues and organs

Ehlers-Danlos syndrome

Marfan syndrome

Module 4.2: Epithelial Tissues

EPITHELIAL TISSUES

Functions:

- 1. Protection -
- 2. Immune defenses form physical barriers; contain cells of immune system
- 3. Secretion –
- 4. Transport into other tissues form selectively permeable membranes
- 5. Sensation detects changes in internal and external environments (ex.

COMPONENTS AND CLASSIFICATION OF EPITHELIA

- Consist of *tightly packed cells* that form **continuous sheets**
- Fairly impermeable and resistant to physical stresses and mechanical injury
- •
- BM (basement membrane)

Classified based on:

- Simple epithelia consist of a _____ cell layer
- Stratified epithelia consist of _____layers
- Pseudostratified looks layered but is not
- •
- Squamous cells
- Cuboidal cells
- Columnar cells

COVERING AND LINING EPITHELIA

- Four types of simple epithelia:
- 1. Simple squamous epithelium
 - very thin single layer of cells with a "fried egg" appearance;
 - adapted for _____

)

- found in air sacs of lung, parts of kidney, and lining blood vessel walls

(endothelium)

2. Simple cuboidal epithelium

- single layer of _____
- found in renal tubules, respiratory passages, ducts of glands, and thyroid gland

3. Simple columnar epithelium

- single layer of rectangular-shaped cells
- often has _____ (increases surface area for absorption of substances) or _____ (propel substances through hollow organs)

4. Pseudostratified columnar epithelium

- appears to be layered because nuclei are found at various heights, but only one cell-layer thick
- found in segments of respiratory tract and nasal cavity; ciliated

Stratified epithelium

- more than one layer of cells;
- protective barriers due to wear and tear

1. Stratified squamous epithelium

- a. Keratinized stratified squamous epithelium
- outer cellular layers are dead
 - lack nuclei
 - filled with protein _____
 - outer layers of skin (epidermis)

b. Nonkeratinized stratified squamous epithelium

- apical cellular layers retain nuclei; still alive
- _____ (ex. mouth, throat, esophagus, anus, and vagina)

2. Stratified cuboidal epithelium

- rare in humans
- lines _____

3. Stratified columnar epithelium

- relatively rare in humans
- found in male urethra, cornea of eye, ducts of salivary glands

4. Transitional epithelium

- only found in urinary system ______
- *basal cell layers are cuboidal* while *apical cell layers are dome-shaped* when tissue is relaxed
- ability of apical cells to flatten contributes to ability of urinary tissues to _

GLANDULAR EPITHELIA

• Gland – specialized cells that produce secretions

Products are released by two mechanisms:

- Endocrine
- Exocrine

Endocrine glands secrete_____, directly into bloodstream (no ducts)

- Allows products to have widespread systemic effects on *distant cells* in different areas of body
- Glands vary in complexity from single cells to large multicellular glands with branching
- Ex.

Exocrine glands

•

- Secretions have only local effects on cells in general vicinity
- Unicellular(→ mucus)
 - digestive & respiratory tracts
 - protects underlying epithelia
- Multicellular (sweat glands, salivary glands)

Types of Exocrine glands secretions:

Merocrine secretion

- fluid product in vesicles
- salivary and sweat glands

Holocrine secretion

- entire cells released
- sebaceous gland

A P

Carcinogens and Epithelial Tissues

- Epithelia cover all body surfaces; therefore more subject to injury than most other tissues
- Carcinogens
- Carcinoma –
- Basal Cell Carcinoma –

Module 4.3: Connective Tissues

CONNECTIVE TISSUES

- Connective tissue proper
 - Loose
 - Dense (regular & irregular)
 - Reticular
 - Adipose

Widely distributed Connects tissues & organs Internal structure of some organs

- Specialized connective tissue
 - Cartilage
 - Bone
 - Blood

Connective tissue functions:

- anchor tissue layers in organs and link organs together
- Support
 - bone and cartilage support weight of the body
 - bone tissue protects certain internal organs
 - cartilage and fat provide shock absorption
 - components of immune system found throughout CT
- Transport blood main transport medium in body
- Characteristics of CT:
 - Cells are surrounded by protein fibers and embedded in ground substance
 - ECM plays an extensive role in the function of CT
 - Usually vascular

CONNECTIVE TISSUE CELLS

Fibroblasts – _____

Adipocytes –

Mast cells - produce histamine that causes inflammation

Phagocytes - includes macrophages that ingest foreign invaders

CONNECTIVE TISSUE PROPER

• Four basic types of connective tissue proper:

- Loose connective tissue
- Dense connective tissue
- Reticular tissue
- Adipose tissue

1. Loose connective tissue (_____)

- mostly ground substance, also fibers, fibroblasts, and occasionally adipocytes
- located beneath epithelium of skin, in membranes lining body cavities, and within walls of hollow organs

2. Dense connective tissue (fibrous connective tissue)

a. Dense irregular connective tissue

- mostly disorganized collagen bundles
- located in_____, surround organs and joints
- b. Dense regular connective tissue
 - Organized into parallel collagen bundles
 - Located in _____

c. Dense regular elastic CT(elastic tissue)

- Mostly parallel-oriented elastic fibers with some collagen fibers
- Found in walls of organs that need to _____(large blood vessels and some ligaments)

3. Reticular tissue

- composed mostly of reticular fibers produced by fibroblasts (reticular cells);
- form fine networks that *support vessels*
 - Also found in _____
 - Forms part of B.M. that supports epithelia, internal structure of liver and bone marrow

4. Adipose tissue (fat tissue)

- consists of fat-storing (& surrounding fibroblasts and ECM)
 - Fat storage (major energy reserve)
 - •
 - Shock absorption and protection

Adipose Tissue and Obesity

- **Obesity** condition of having *excess adipose tissue* in proportion to lean body mass:
- Hypertrophic

Hypercellular

Both types increase risk for certain health problems; depends on *distribution of adipose tissue* and *genetic factors*

SPECIALIZED CONNECTIVE TISSUES

Specialized connective tissues

- Cartilage –
- Bone tissue (osseous tissue) –_____
 - muscle attachments; stores calcium, and bone marrow (produces blood cells and stores fat)
- Blood liquid ECM called _____; consists of mostly water, dissolved solutes, and proteins

Cartilage

- Rigid matrix
- **Chondroblasts** immature cells that *divide by mitosis* \rightarrow *ECM*

– _____ in lacunae

- Mostly avascular (blood supply limited to outer sheath - perichondrium)

3 types of cartilage:

- Hyaline cartilage
 - ends of long bone, trachea, nose, most of fetal skeleton
- Fibrocartilage
 - great tensile strength

- _____, menisci of knee, symphysis pubis

Elastic

- external ear, auditory tube, epiglottis

• Bone

- Hard matrix
- Supports and protects
- Hemopoiesis
- Skeleton
- Osteoblasts, osteocytes in lacunae, osteoclasts

Blood

- ECM is *fluid* = plasma
- Plasma proteins not like fibers in other CT; smaller and involved in *transport* & blood clotting
- Erythrocytes (_____) transport oxygen
- Leukocytes (_____) function in *immunity*
- Thrombocytes (_____) cell fragments; major role in *blood clotting*

Osteoarthritis and Glucosamine Supplements

Osteoarthritis

Glucosamine

Module 4.4: Muscle Tissues

MUSCLES TISSUES

Muscle tissues are specialized for ______

(use ATP as energy source)

- Movement of skeleton, heart beating, and propulsion of substances through hollow
- Muscle cell or myocyte; _____(ability to respond to electrical or chemical stimulation)
- 3 types of muscle tissue:
 - Skeletal muscle
 - Cardiac muscle
 - Smooth muscle

- Skeletal muscle
 - Attached to bone
 - Striated

-____

Cardiac

- Heart
- Striated
- _____
- Intercalated discs
- Smooth
 - Walls of hollow organs, blood vessels
 - Non-striated

Module 4.5: Nervous Tissue

NERVOUS TISSUES

- Nervous tissue
 - brain, spinal cord, nerves
 - two main cell types:

Neurons –

Neuroglial cells -

Module 4.6: Big Picture of Tissues in Organs

Two or more tissues that combine structurally and functionally form an organ:

- Simple organ example skeletal muscle:
 - Composed of two main tissues
 - -skeletal muscle and dense irregular collagenous CT
 - Each has distinct functional role; skeletal muscle tissue allows it to contract; surrounding connective tissue binds muscle cells together and supports them so that their activity produces a contraction of *whole organ*
 - More complex organ; consists of many different tissue types trachea
 - Hollow organ; provides passageway through which air passes on its way into/out of lungs
 - illustration of tissues of trachea from superficial to deep with list of their main functions
 - Each tissue layer serves an important role in overall function of trachea: conducting air

Module 4.7: Membranes

MEMBRANES

Membranes – thin sheets of tissues that _____:

Serous membranes

line pericardial, peritoneal, and pleural cavities ______

Synovial membranes

- composed of CT

-_____

• Mucous

- line tubes/organs that connect to outside of body

- secrete mucus

Cutaneous

-____

Chapter 5: Integumentary System

Skin (_____) = largest organ (10-15% of TBW)

2 main regions:

Epidermis – keratinized stratified squamous epithelium

Dermis – _____

Module 5.1: Overview of Integumentary System

SKIN STRUCTURE

- Accessory structures:
 - sweat glands, sebaceous glands, hair, nails
- Sensory receptors
 - detect_____, ____, ____, _____,
- Arrector pili muscles
 - small bands of SMC associated with hair
- Epidermis is _____
 - Transport of O₂ and nutrients via diffusion
- Dermis is vascular
- Hypodermis aka superficial fascia or subcutaneous fat, is _______
 - not part of skin, anchors skin to deeper structures

Cellulite

- Dimpled or "orange peel" appearance
- *Thighs, hips,* and *gluteal area* due to:

_

Normal condition

FUNCTIONS OF THE INTEGUMENTARY SYSTEM

1. Protection- mechanical trauma, pathogens, and _____

2. Sensation – perceive changes in the body's _____environment

3. Thermoregulation

relies on _____loops to maintain stable internal temperature (due to muscle activity and metabolism)

- 4. Excretion process where *waste products* and *toxins* are eliminated(sweat)
- 5. Synthesis Vitamin D, calcitriol

[Body Temperature above normal]

- Stimulus: body is too HOT (due to weather extremes or fever)
- Receptors: thermoreceptors detect an increase in ______
- Control center: thermoregulatory center in brain (_____) acts as a thermostat
- Effector/Response: Control center stimulates sweating and vasodilation (VD) of vessels in dermis
- Homeostasis and negative feedback:
 - body temp. returns to normal
 - thermoregulatory center decreases output to glands and vessels

[Body Temperature **below** normal]

- Stimulus: body temperature drops below normal range; too COLD
- Thermoreceptors: detect drop in temperature and relay information to hypothalamus
- Control center reacts
- Effector/response: blood vessels in dermis vasoconstrict (VC) ; decreased sweating;

Homeostasis and negative feedback:

- body temp. returns to normal
- thermoregulatory center decreases output to vessels and muscles (reduce shivering)
- Lose heat: _____
- Conserve heat: _____
- Produce heat: _____

· Vitamin D synthesis:

```
   UV light

   precursor to Vit. D → Vit. D<sub>3</sub> (cholecalciferol)

   (dehydrocholesterol)
   (active form)

   (in skin)

   → intermediate product → calcitriol (hormone)

   (in liver)
   (in kidneys)
```

- Calcitriol nec. for absorption of Ca++ by S.I.
- •Ca++ nec. for_____, ____,

Module 5.2: The Epidermis

THE EPIDERMIS

• Epidermis

- most superficial region
- composed of mostly keratinocytes
- produce____(protein)

Organized into 5 layers (strata):

Stratum basale (stratum germinativum)

- most metabolically and mitotically active

Stratum spinosum

- still close to blood supply
- metabolically and mitotically active

Stratum granulosum

- three to five layers of cells
- keratin filled cells (provides water resistance)

Stratum lucidum

- narrow layer of clear, dead keratinocytes
- found _____

Stratum corneum (outermost)

- outermost layer of epidermis
- several layers of dead flattened
- sloughed off or exfoliated mechanically

Keratinocyte life cycle:

- Dead keratinocytes are replaced by ______of cells in stratum basale and spinosum close to blood supply
- As keratinocytes in deeper strata divide they push cells above them into more superficial layers (40-50 days)
- Mitosis takes place at night?!

OTHER CELLS OF THE EPIDERMIS

Dendritic (Langerhans) cells

– located in ______

- _____ of immune system

- protect skin and deeper tissues from pathogens

Merkel cells

- located in _____
- sensory receptors detect _____
- fingertips, lips, and at base of hairs

Melanocytes

- located in _____
- produce_____(protein skin pigment)

THICK AND THIN SKIN

Thick skin

- all five epidermal layers
- thick stratum corneum
- ____, many sweat glands

Thin skin

- has only *four layers* (no_____)
- Many hairs, sweat glands, and sebaceous glands

______ – additional layers of st. corneum; form in either thick or thin skin due to *repetitive pressure*

Module 5.3: The Dermis

THE DERMIS

Dermis – highly vascular layer deep to

- Functions:
 - Provides
 - Contains
 - Anchors epidermis in place
- Composed of *two distinct layers:*
 - Papillary
 - Reticular

THE PAPILLARY LAYER

Papillary layer

– composed of ______

Dermal papillae

- tiny projections
- capillary loops
- Tactile (Meissner) corpuscles (_____)

THE RETICULAR LAYER

Reticular layer

- deepest thicker layer of dermis
- mostly_____(collagen and elastic fibers)
- rich in proteoglycans (keeps skin *firm* and *hydrated*)
- Lamellated (Pacinian) corpuscles (_____
- Blood vessels, sweat glands, hairs, sebaceous glands, and adipose tissue are found in reticular layer

SKIN MARKINGS

Epidermal ridges

- enhance _____
- characteristic patterns; loops, arches, and whorls;
- Sweat pores open along these ridges and leave a thin film or ________
 on most surfaces

Skin Wrinkles

• Due to age-related *decrease in collagen and elastic fibers*, *proteoglycans*, and *adipose tissue* in the _____

- Reduces
- Appearance can be minimized by:
 - Botox
 - Fillers
 - Topical creams

Delay wrinkles:

Module 5.4: Skin Pigmentation

MELANIN

Skin color

- Melanin (melanocytes)
 - protect keratinocyte DNA from mutations induced by UV rays
 - number of melanocytes is _____
 - spectrum of skin tones due to _____
- Carotene (ingest yellow orange vegetables)
 - Imparts yellowish color to ______
- Hemoglobin (RBCs)
 - coloration depends on blood flow to dermis
- Increased melanin synthesis with exposure to natural or artificial UV radiation(tan)
- Erythema blood flow
- Pallor ____blood flow
- Cyanosis low_____blood

Common variations of pigmentation:

- **Freckle** small area of ______ *pigmentation* (melanin production)
- Albinism melanocytes fail to manufacture tyrosinase results in lack of pigmentation

Tanning and a "Healthy Tan"

- Tanning salons promote notion of "healthy tan"
- THERE IS NO SUCH THING AS A HEALTHY TAN!
- UVA and UVB rays are associated
- ANY amount of tanning damages

Module 5.5: Accessary Structures of Integument: Hair, Nails, and Glands

Hair

Accessory structures (appendages):

- derived from epithelium only
- Hair (pili)
 - protrude from surface of skin over entire body except thick skin, lips, and parts of external genitalia

Cuticle -

Cortex -

Medulla –

Hair

- Protect by preventing _____
- Protect underlying skin of scalp from ______
- Sensory neuron detect changes in environment

HAIR STRUCTURE

- Hair stratified squamous keratinized epithelial
- Shaft
 - dead keratinized cells
- Root
 - surrounded by sensory neuron
 - hair papilla -projection of blood vessels in indented base
 - hair bulb = root and hair papilla
 - many epithelial cells are still alive (have not completed keratinization process)
- Matrix small number of actively dividing keratinocytes found at base of root
- Root is embedded in hair follicle
- Strand of hair has *three visible regions*:
 - Inner medulla soft keratin
 - Middle cortex hard keratin provides strength
 - Outermost cuticle single layer of overlapping keratinocytes containing hard keratin; provides mechanical strength
- arrector pili muscles = _____
- "goosebumps" = hair stands up (piloerection)
- hair growth varies, averages ~ 1-1.5 cm per month

HAIR PIGMENT AND TEXTURE

- Hair color is determined by ______
 - *Blond hair* has _____ melanin
 - *Black hair* which contains _____ of melanin
 - Red hair has a special reddish pigment containing iron
 - · Gray or white hair melanocytes produce

NAILS

Nails – composed of stratified squamous epithelium filled with hard keratin

- o Nail plate sits on top of _____
- o Lunula half-moon shaped region of proximal nail plate
- o Eponychium ___
- o Hyponychium St. corneum under free edge of nail

GLANDS

• Sweat (sudoriferous) glands a → sweat

- Eccrine : widespread, mostly water , wastes, electrolytes
- Apocrine: axillary, & anal regions, _____, odoriferous, associated with hair follicle

Modified sweat glands:

- Ceruminous: _____(ear canal)
- Mammary: _____
- Sebaceous glands → _____
 - Thin skin only
 - Hydrophobic barrier

Module 5.6: Pathology of Skin

Real World Acne

- Acne vulgaris
- Cause
- accumulation of _____
- maybeinfectedbybacteria →

- _____ (testosterone)

SKIN CANCER

- **Cancer** one of most common diseases in world; caused by *mutations in DNA* that induce a cell to *lose control* of **cell cycle** (**Figure 5.14**):
- Unchecked cell division eventually leads to formation of a large population of undifferentiated cells known as a _____
- Cancerous tumors are able to metastasize; tumor cells spread through
- Damage caused by metastatic tumor cells alters function of invaded organs
- Three cancers affect skin
 - linked to UV radiation exposure
 - carcinogens (Cancer-inducing chemicals, toxins)
- 1. Basal cell carcinoma
 - Most common of all cancer types, including skin cancer
 - Arises from keratinocytes in stratum basale

2. Squamous cell carcinoma

- Second most common skin cancer
- Cancer of keratinocytes of stratum spinosum

3. Malignant melanoma

– cancer of _____

- Arms" of cancerous melanocytes extend down into dermis and access *dermal blood vessels* (metastasis)

Malignant melanoma can be distinguished from other skin cancers and normal moles using ABCDE rule:

- (A):____(two sides do not match)
- (B):_____irregularity

- (C):_____, usually blue-black or a variety of colors

- (D):______generally larger than 6 mm (pencil eraser size)
- (E):_____(changing) shape and size