The Geometric Plan

Vico was a philosopher of myth. His beliefs about royalty and absolutism were constructed out of the names of gods, heroes, and institutions—names that he had subjected to a process of what Vico called "poetic philology." Yet there is a strong mathematical side to the Vichian philosophy. Pythagorean, mystic, and poetic, this side has more to do with numerology and geometrics than with arithmetic and geometry. It has links with esoterism, with the number theories of such predecessors to Vico as Jean Bodin, and with some of the ideas of Vico's contemporary Leibniz. Vico's efforts are devoted to elaborating his notions of justice, notions that reach architectural expression in the symmetries, distributions, and dimensions of the palatial centers from which absolutism radiated. In short, if Caserta was planned as another nea polis and as a more beautiful rival to the fascinating but fatal Parthenope, it also embodies these mathematical ideas. But before we look at these ideas in their eighteenth-century aspect we must examine them in certain earlier forms: namely, in Italian geometric planning and in the French absolute palace.

The subject of Italian geometric planning can best be introduced by glancing at the project made by the Neapolitan architect Mario Gioffredo for Caserta and then comparing it with the plan of Versailles (figs. 3.15, 6.2, 6.3). The measurable uniformity and regularity of the one is as clear as the warrenlike unpredictability of the other. How did such differences come about?
Geometric planning has five basic characteristics:

1. The solids and voids are chiefly located in accordance with a regular or uniform two- or three-dimensional grid.

2. Either walls or sight lines, or both together, may mark out the coordinates (or as mathematicians say, vertices and edges) of the grid.

3. Repeated groupings create various kinds of symmetry and also involve close packing, nesting, and vectors.

4. "Canonical" rectangles and parallelepipeds, such as squares and cubes and derivations of them based on simple fractions such as squares-and-one-third or cubes-and-one-fourth, appear in the principal spaces. (These rectangles were generally known by their Latin names, like *superbipartiens tertias*, 'a square divided into thirds and then extended by two more such thirds.' In other words the shapes were described in terms of their derivation from the square.)

5. Comparable symmetries appear in the arithmetical and geometrical and other series that are found in the numbers generated by proportions, dimensions, and distributions.

This geometric tradition begins, tentatively, in the fifteenth century. Brunelleschi seems to come first. In churches he designed, modular grids dictated the nature of the orders used; he also used grids in experiments with perspective. But perhaps the most imaginative figure was Filarete. Filarete's treatise on architecture, written in the 1460s, anticipates Vanvitelli at Caserta by displaying a capital city filled with large palaces, a city erected on a cubic grid system by a huge work force of more than 100,000. Some of Filarete's palace and fort designs meanwhile anticipate Gioffredo, having large square moats in the form of labyrinths.

One is a perfect square 10 stadii (c. 600 feet) wide. At the center is a square palace made up of 9 canonical rooms (fig. 3.1). On a more modest scale Filarete designed a hypostyle reservoir 100 Florentine braccia (191 feet) square, palatial in aspect if not in function, and equally rigorous in its geometric ground plan of 10 bays per side (fig. 3.2). The simple arithmetical series 14, 16, 18, 20 can be used to account for all the dimensions, though the bay system of the upper floors is not consonant with that of the lower (the ratio is 12:7). A symmetrical grid (but not a uniform one, which would call for equally spaced coordinates) produces a clear, isomorphic, instantly visualizable structure.

Later in the fifteenth century Francesco di Giorgio Martini invented similar geometric schemes, using squares, double squares, and the like for government buildings in which the type of government is reflected in the plan and room size and distribution. For Francesco, princes' palaces had to be different from republican ones, the latter having many small rooms for committees and much circulation space. There is also one large assembly room with central access from a series of vestibules, stairs, and courts (fig. 3.3). Princes' palaces, on the other hand, have a narrow *androne*, or entrance vault, guarded by rooms for doorkkeepers (fig. 3.4). The rooms are more nearly the same
3.1 Filarete. Labyrinth.
From Filarete, *Tratato* (1460s)

3.2 Filarete. Reservoir
The Geometric Plan

3.3
After Francesco di Giorgio. Republican palace. From the Trattati (1480s)

3.4
After Francesco di Giorgio. Prince's palace
size. Princely palaces in general are also larger than the republican ones and contain apartments for courtiers and guests. The republican palace stresses the housing of a governmental machine; the royal palace is a magnificent, hospitable, secure family residence. But in both cases when Francesco's schemes are mapped onto a grid, the various rooms turn out to be proportioned in accordance with the aforementioned canonical shapes.

Francesco's "palatium maggiore in Roma," a fantastic restoration of some Roman ruins, has a massive rectangular plan about 660 by 700 feet, worked out on a strong grid, and with a layout similar to that found in Francesco's princely palaces but with further symmetrical doubling of courtyards and with long lineups of small identical chambers. A similar attempt to restore what is apparently one of the Campidoglio palaces is almost a square (no scale is given) and has four large courtyards in the center arranged in a Greek cross, the corners then being filled in with large rectangular rooms (fig. 3.5). This central area is completely surrounded by strips or banks of chambers, these being 3:2 in plan on the ends and 6:5 along the sides. The banks are punctuated on their central axes by narrow stair corridors. The four corners of the rectangle are expressed slightly outward by means of exterior pilastering that does not match the interior grid. All but two of the eight exterior corner rooms are cylindrical. The central axis of each facade is fortified with a projecting bank of small chambers, making, with the stair corridors, groups of five on the long sides and seven on the short. The geometrical order also involves two twin pairs of facades—an important feature of later geometrical planning. Parts of the plan are marked "separate quarters for conservator," "separate arch of Marcus Aurelius," "temple of Jupiter," very different features of the building but completely integrated with the overall grid.

A more important moment in the story (fig. 3.6) came in 1488 when Giuliano da Sangallo conceived a massive cubic grid palace for one of Carlo di Borbone's Renaissance predecessors, Ferdinand I of Naples. It was to house the main officers of the kingdom, setting them and their staffs all within one stately royal building rather than leaving them to their own private palaces where for generations the kingdom's legal, fiscal, and tax business had been conducted by hereditary officers possessing a feudal independence of the crown. Ferdinando's impulse to put his government all under one royal roof foreshadows Gennaro Maria Galanti's theory, also concocted in Naples, that royal palace construction could be a form of political and social manipulation.

Sangallo's palace was to be inscribed within a nearly perfect square measuring about 330 Florentine braccia on each side (just short of 630 feet). The scheme thus called for a building much larger than any seriously intended earlier palace of the period. Visitors were to enter through a central five-arched portico. A swath of circulation space flows through it and then shrinks into three colonnaded corridors forming a triple androne. It widens out into a huge laterally set courtyard
3.5 Francesco di Giorgio. Palace on the Campidoglio, Rome. From the *Trattati*.

measuring about 185 by 120 braccia (535 by 229 feet). Beyond a square fountain recess are a rectangular niched salon and a small, square, vaulted room, probably a chapel. The recess is flanked by rooms marked S and G on the plan, audience rooms, no doubt, and perhaps gardens. All this occurs within the central presentational part of the palace. The remainder consists of two strips, one down each side of the plan, each of them one-eighth the width of the whole. Each strip, in turn, is divided along its length into three large, squarish blocks containing apartments or suites, the end apartments having pairs of stairs and the central ones being without stairs. The arrangement is identical on each side of the palace, and, again on each side, the end apartments are identical. Between these apartment blocks are setbacks fronting narrower suites of yet smaller rooms. So Sangallo’s arrangement is basically the same as in both of Francesco’s plans, featuring central circulation space that widens and then narrows abruptly, symmetrical banks of small framing chambers, and a large central courtyard with stairs on axis on the far side. But Bramante’s scheme is larger in scale and has more subdivisions.

Interestingly enough, construction on Sangallo’s building was actually begun. Again, the project reflects the client’s desire for control. Finally the fact that the Tribunali Palace, as it was called, should have provided for an amphitheater (for entertainment for the public) as well as for government offices, is still another way, aside from its organization, in which it prefigures Caserta.

In 1506–1508 or so Donato Bramante designed a rather similar building (figs. 3.7, 3.8), also called the Palazzo dei Tribunali, on the via Sistina in Rome. Commissioned by Julius II, its massive foundations still record the desire of a second absolute ruler of the Renaissance to house several bureaucracies under one roof. The structure would have been familiar enough to Vanvitelli, who was a papal architect for most of his life, even after he had moved to Naples. The heart of Bramante’s structure is the square courtyard filled with an arcade on piers with attached columns having five openings per side. The central openings of this arcade match the building’s main cross axes. The outer parts of the palace are split, also by the cross axes, into four more or less identical L-shaped room clusters. These consist of various-sized sale and camere, ‘rooms’ and ‘chambers,’ and each cluster has a double stair at its inner corner. The distribution of the different-sized rooms is as follows: four sale (of two different sizes, those on the front over the shops being 10 Roman palmi, about 4.6 feet, shorter than the rear ones), four main stairs, four small courtyards, and five tower rooms (at the corners and at the center of the main front). There are then 16 chambers and various even smaller rooms for guards and the like. The sizes and shapes within each category are about the same. The main court, larger sale, the stairs, and tower rooms are all squares or double squares. The dimensions are not a true series but are reducible to a group of five numbers: 18, 20, 25, 30, 46, and their multiples.
The Geometric Plan

3.7
Bramante. Projected
Tribunali Palace for
Rome, c. 1506.
Florence, Uffizi

3.8
After Bramante.
Tribunali Palace for
Rome, mapped onto
a regular grid of
11.5-palmo squares
Bramante's plan can be mapped onto a grid of 11.5 Roman palmi squares (fig. 3.8). Thus mapped, it measures 34 modules, 391 palmi, or 203 feet, by (respectively) 27, 310.5, or 161, not counting the church's projection. Most of the subdivisions of the plan accord with the edges of the graph. The towers are 5 modules square, the court is 17, the arcade 13.5, and all the rooms are measurable in 1 or 0.5-module magnitudes. Slight deformations were necessary to accommodate Bramante's scheme to this grid. Thus the towers are no longer square on the interior but have turned into 4:3 rectangles. The salons flanking the church actually measure 90 by 46 palmi in figure 3.7, whereas in their mapped form they have the proportion of 8:4 modules; that is, they suffer a 5 percent deformation into double squares. But these are fairly insignificant variations.

In certain ways Bramante's conception anticipates the Escorial (fig. 3.9), where Carlo di Borbone spent much of his childhood. Although the builders of four of these early geometric palaces, Ferdinando I of Naples, Julius II, Francis I (who planned such a building at Romorantin in the Loire Valley), and Philip II of Spain, were absolutists who ruled unusually large territories, the Escorial was mainly a residence, not a palace for tribunals, nor was the town of El Escorial a capital. The palace memorializes a Spanish victory that occurred on the feast day of St. Lawrence, famed for his martyrdom on a grille, hence—so goes the lore at any rate—the grid plan. The building was erected in 1568–1584 by Juan Bautista de Toledo and his successor Juan de Herrera.
Unlike any earlier building discussed, the Escorial is inscribed (minus the projecting palace) on a rectangle roughly derived from an arithmetical progression based on 180. That is, it is 540 by 720 Castilian feet (c. 641 by 769 U.S. feet), if the Castilian foot is equal to 14.25 U.S. inches), and 540 plus 180 equals 720. The forecourts occupy an area measuring about 360 Castilian feet square, and 360 is another number in that series.

These equivalences are rough; on study the plan is less geometrical than it seems at first sight. Yet with the large Greek cross church on the main axis of the central courtyard and with the similar crosses that form the courtyard complexes flanking the atrium, the Spanish palace is a cousin of Bramante’s Tribunali, though of course in actual size it is closer to Sangallo’s Neapolitan project. More important, as a single structure containing a royal palace, a cathedral or priory church, a college, and a monastery, the Escorial anticipates Gioffredo’s original plan for Caserta (fig. 6.2).

Of the geometrical palaces considered, only the Escorial was erected and put to use. This suggests the tenacity and resources that were necessary to complete these structures. It was a long time before anything really comparable was erected elsewhere in Europe. Meanwhile geometric plans were often used in smaller buildings. The books of Palladio, Scamozzi, Du Cerceau, and many others are there to prove it. Every plan of Serlio, for example, is geometrical, and he brings every building type from peasant’s house to church and palace under the sway of grid-based geometry.10

In the more elaborate and large-scale projects of the seventeenth century, however, grid-based rectilinear schemes had to compete with the more difficult, more dramatic, more mathematical play of curves that characterizes the plans of Borromini, Bernini, Guarini, Vittone, and, to name a more minor figure, Juan Caramuel Lobkowitz, the Bishop of Vigezano, near Milan, an indefatigable treatise writer. Architectura obliqua (his phrase) takes its place beside architectura recta11—and not only architectura obliqua but what I will call architectura oblata, ovata, and spiralis. Nonetheless the exploitation of uniform and symmetrical rectangular grids continued side by side with all this throughout the seventeenth and eighteenth centuries.

In analyzing the plan of the Escorial I extrapolated an arithmetical series from it. Is there any evidence, aside from what is implicit, that architects could design with such ideas in mind? The answer is yes. Caramuel will be our guide. In the eighth tratado of his book he describes the plans of famous ancient buildings in terms of their distributions and dimensions, and also in terms of the mathematical means or factors thus generated. For example the Temple of Diana at Ephesus, he says, was 8 columns wide and 16 deep (fig. 3.10). There were thus 128 columns in all (revised from the elder Pliny, Historia naturalis 36, 14, which gives 127). According to my reading of Caramuel’s text the geometric series 8:15:28, etc. (that is, 15 ÷ 8 = 1.87; 28 ÷ 15 = 1.86] rises out of the temple’s 8-column facade. The third number in the series, 28, is then multiplied by the first, 8, to equal 224, which is the width of the temple. Then 28 is multiplied by the second number in the series, 15, to give
420, the temple's length (in feet of an unspecified species). Caramuel's system thus links the grid plan, the distribution of columns, and the dimensions through a common factor within a mathematical series. Note also that the facade of this temple, as Caramuel himself points out, is really divided into three parts, since the central intercolumniation, in accordance with classical practice, is wider than the others.

These two types of intercolumniations and their arrangement can be numbered in a way that expresses the reflected or mirror symmetry of the facade (fig. 3.10). The sides of the temple are generated by Vitruvius's well-known formulas, whereby the number of intercolumniations along the sides of a temple must equal the number of columns along the front, minus one. In other words,

$$2(x - 1) = y,$$

where $x =$ the side intercolumniations and $y =$ the number of columns across the front. This is a Diophantine equation, familiar in Vitruvius's time. Meanwhile the temple front can be expressed:

* * * * * * *

4 3 2 1 2 3 4

3 1 3

The asterisks in the upper row represent the columns; the numbers in the second row enumerate the intercolumniations, numbered symmetrically. In the third row are the sets of intercolumniations, distinguished in accordance with size (three
equal intervals, one wider one, then three more equal ones). Each bay, thus represented, expresses both its position and its “handedness” or “sense” vis-à-vis the adjacent bays, as well as its position beneath the sloping pediment of the temple. It is thus part of a vector, for it has position, handedness, and direction. Three intercolumniations reduce to two groups that flank the one center intercolumniation, which, being not only central but wider, is the more important. The central bay is in fact a Pythagorean One.

This method of reducing symmetrically or serially arranged sets of numbers to either 1 or 0 is part of a long-standing tradition which, like so much of Pythagorean mathematics, had mystical overtones. The number 1 was thought of as the source of the other numbers, and here it actually seems to be so. Zero is less of an entity in Pythagoreanism; but it was coequal with 1 in a system of binary arithmetic invented by Leibniz in 1697. This reduced all numbers, via a grid somewhat resembling a magic square, to combinations of 1 and 0. Leibniz’s system of binary arithmetic can be illustrated by an abacus-like structure (fig. 3.11) in which zeros alternate or pair with ones on the left side of an axis, while their normal-number equivalents are placed on the right. Each new magnitude adds either a new 1 or a new 0 on the left, in accordance with a principle that dislodges the earlier digit one space to the left and simultaneously transforms it from 1 to 0 or vice versa. By following Caramuel’s implications the series 420, 224, 128, 28, 15, 8, . . . , which accounted for a whole temple, can be reduced to the sequence 1 0 1.

Leibniz praised his system for its simplicity, for the fact that complicated memorization was unneeded, and above all because it expressed the concept of God’s creation of Something, 1, from Nothing, 0. Leibniz even wanted his table inscribed on an honorific medallion with the motto THE IMAGE OF CREATION: TO CREATE EVERYTHING OUT OF NOTHING, 1 IS SUFFICIENT, and with a portrayal of God separating the light from the darkness. Galanti, the Neapolitan writer on Magna Graecia mentioned in the last chapter, refers to this system and suggests that it is related to Pythagoras’s ideas.13

Further into the eighteenth century Jean-François Félibien (in a book owned by Vanvitelli) extrapolates a geometric plan from the younger Pliny’s description of his Villa Laurentina near Ostia. Pliny’s description of this building is so exact, says Félibien, that “the dimensions of each main part . . . are more or less determined by a comparison of each part with the others, and by the necessity of conserving all the views, projections, and provisions Pliny says are there.”14 Félibien is only repeating Vincenzo Scamozzi, who a century earlier had published similar geometric plan reconstructions of Roman villas. In fact Félibien republishes one of Scamozzi’s plans along with Scamozzi’s description of it. The Italian writer had claimed, however, that Pliny’s text was not systematic enough to produce a graphic figure, and he improves on Pliny’s information by positing a hypostyle matrix with “equal spaces as if there were columns dividing it up,” assigning to each intercolumniation a dimension
of 12 feet 18 inches. In other words he creates a uniform rectangular grid on a module just like Caramuel's and extrapolates a number series from it (fig. 3.12, upper left-hand corner). But this time he does it for a complex walled and partitioned building, a building with many articulated functions, rather than for a temple.

Let us apply Caramuel's principle to Scamozzi's villa. The latter is a rectangle of 14 by 32 columns, making a total of 448. The dimensions would be 179 feet 8 inches (Venetian) wide, by 410 feet 8 inches deep (c. 200 by 455 U.S. feet). These dimensions relate to the distribution through a common factor, 12.86, rather than in a series (that is, 14 columns deep by $12.86 = 180$, and 32 columns deep by $12.86 = 413.52$, close enough to 179 feet 8 inches and 410 feet 8 inches).

Despite the fact that the plan is for a house rather than a temple, the same thing can be done to Scamozzi's plan as to Caramuel's. In this case windows are the intercolumniations and the spaces between windows the columns. The spacing is more varied, yet equally symmetrical if not more so. The lower row of numbers in figure 3.12 begins with the end bay, consisting of one 2-foot column and one 2-foot window. Then comes a 4-foot column, then 10 alternations of 2-foot windows and 3-foot columns, then an axial 3-foot door, and so on across the rest of the facade in exact mirroring. The upper row of numbers shows the number of elements in each subdivision of the facade, as determined by a change in dimensions.
In other words there are four types of subgroup or bay: (1) two columns followed by a 2-foot window; (2) 4-foot columns; (3) ten 2-foot windows alternating with 3-foot columns; and (4) a 3-foot door. The advantage to looking at the facade this way is that, instead of assigning arbitrary numbers (1, 2, 3) to the intervals of the facade, as with Caramuel (fig. 3.10), this method employs the actual dimensions—dimensions that can also be used to state the proportions. The same thing was done in figure 3.8, when Bramante’s Tribunali Palace was mapped onto a grid of 11.5-palmo squares. Module, dimension, and proportion coalesce into the same sets of numbers. In figure 3.8, however, the grid was extrapolated and the original design slightly deformed. Scamozzi’s own words declare the grid was the matrix of the plan; and the correspondence between grid and plan is exact.

In this sense Caserta is directly, if not consciously, descended from Sangallo’s scheme for Ferdinando I of Naples; but it is equally descended from the first modern absolute palace, a building much larger than anything so far discussed. This came into existence in 1560 when Philibert de l’Orme began to extend the Louvre so it would join his newly begun Palais des Tuileries. Together the two structures formed one vast irregular building extending a good 400 toises (2400 feet) along the Seine. Here, under Catherine de Médicis and then Charles IX, France housed many of the chief, most representative elements of her financial, legal, military, and cultural structures as well as the royal family and the court. France, which was then by far the largest and most complex unified country in Europe, was governed mostly from this building until Louis XIV moved the court and a great part of the government to Versailles in the 1660s.

The Louvre and the Tuileries were the result of at least twenty building campaigns lasting from the Middle Ages through the nineteenth century. Although the buildings are (or were: the Tuileries was destroyed in 1871) carried out mainly in a Renaissance style they represent the thinking of a dozen or more architects and many different patrons. There is great irregularity. Even the one reasonably regular section, the Cour Carrée, is the work of four different architects (Lescot, 1546–1559; 1566–1600; Lemercier, 1624–1654; Le Vau, 1650–1664; and Perrault, 1667–1674), and betrays several shifts of program. Confusingly,
the facades sometimes reflect the interiors and sometimes do not. The module varies. The orders are used as a mere cladding and are not, in the stricter Italian manner, reflected in the proportions of the bays or the compartments they ornament. Lescot, in 1546 and then again in 1598, drew up schemes for realigning the long galleries leading from the Cour Carrée to the one range of the Tuileries that was actually built. These tried for greater regularity, but the vast sizes of the courts and the spindly linearity of the wings would have defeated any geometric effect had the plan been carried out (fig. 3.13).

The layout of Louis XIII's Versailles (1624), on the other hand, is perfectly geometric (fig. 3.14). A firm central axis is flanked by palace and outbuildings with bilateral mirror symmetry. The palace is based on a square and its rooms, including the four projecting corner towers, are either squares or canonical rectangles. The court is a square-and-one-quarter, or sesquiquartal. The plan is at one with those in sixteenth-century treatises.

Yet, of course, the great name to be connected with Versailles is not that of Louis XIII but that of his successor. It was the Sun King who transformed this modest geometric lodge into the greatest palace ever (fig. 3.15). By 1674 Versailles contained quarters for guards, extensive royal apartments, and all sorts of other practical and pleasureful aménagements. Living quarters represented different social classes and dozens of occupations; on the right-hand side facing what was to become the Cour d'Honneur was a government office wing. Symmetrically disposed in the form of small, square, separated buildings were further pavilions for government ministries. All these things were expanded, enriched, and interlocked during the seventeenth and eighteenth centuries. Far more than the Louvre, and more than the Escorial or the unbuilt Italian palaces discussed, Versailles aimed to gather separate, semi-independent local offices, nationalize them, and put them under one roof in logical groupings.

Versailles' siting and context were as important to its proclamation of absolutism as was the château proper. On the east the palace was isolated and focused upon by its attendant town, an urban mass split into geometric wedges by three great avenues forming a trident as they move forth from the palace. On the west are the responding geometries of park and gardens. As far as the eye can see, the works of man and nature celebrate this one vast building known at the time not as a domicile, however royal, but simply as the "Château de la France." 19

At Versailles, in a way that is much more elaborated and complex than at the Louvre, the royal family, ministers, officials, guards, servants, ambassadors, and even the public all had their places—their rooms, their corridors, their stairways grand or small—their spheres. These highly specific spaces and the decoration that adorned and explained them made up a taxonomic grid for rituals that Louis himself constantly enriched. He
3.13

3.14
moved through it like a sun through its latitudes and longitudes, from lever to conseil to Mass to grand-couvert to coucher. As Pierre Verlet writes:

Louis XIV impressed on his royal métier a luxury and ostenta-
tion whose mechanisms no king of France, not even Francis I or
Henry III, had pushed so far. The progression of his apart-
ments, the hierarchy of his entrées, the rituals that had to sur-
round his person—rituals in accordance with which one person
had to be in this room and another in that—were fixed with a
minuteness that could appear ridiculous to us today, but which
filled up the existence of most members of his court. 20

With absolute control went absolute routine. A glance at the
plan of Versailles as it was elaborated to house all this, however,
reveals it to be very different from the modest geometric palace
that is now barely discernible as it demarcates the Cour d’Honne-
ur (fig. 3.15). Around this center has been established a large
rectangular envelope of state rooms. But the whole of it, as
noted, has been fractured into an irregular web of chambers,
galleries, anterooms, and so on. From the original vertical
government and stable wings now project two massive hori-
izontal irregular wings, each almost 800 feet long, mainly by
Jules Hardouin-Mansart. These contain the theater, the chapel,
and dozens of other governmental, residential, and office or
ceremonial functions.

The result is ungeometrical both in toto and in detail. Scrutiny
of the room alignments, door placements, circulation facilities,
and lighting shows this clearly. Look at the king’s “interior”
apartment, built for informal purposes yet still a place of cere-
mony, filled with works of art. When the apartment layout is
aligned along the rear wall of the transverse range of the Cour
d’Honneur (fig. 3.16, A), the whole suite is cocked at an angle
some 5 degrees from the vertical. The angles marked B in fig.
3.16 are therefore all less or more than 90 degrees. This part of
the palace was erected beginning in 1677, and is located on the
right of the Cour de Marbre. Three major rooms, the bedroom
(a), the Salon de la Pendule (b), and the study (c), line this wall
of the court. The rooms are all the same width but of different
lengths. Only the bedroom (minus its alcove) has canonical
proportions in plan (it is about 5:3, a superbipartiens tertias).
The central section, comprising the bed alcove (d), the anti-
chambre des chiens (e), the staircase (f), the cabinet de chaise (g)
and the arrière cabinet (h), is random in distribution, proportion,
alignment, and circulation. The stair (f) has no window at
level, nor does the cabinet de chaise. Shapes and wall thicknesses
are irregular and illogical. The same goes for the other chambers
and for the Cour des Cerfs (C). The little corridor (D) that
clings to the outer right-hand margin of the apartment is equally
improvisational. There is no logical grid, no module, no mean-
ing or mathematical economy to the sequences of dimensions.
The apartments of the dauphin and dauphine are even more
chaotic (fig. 3.17). Such planning is fundamentally opposed to
geometrical principles. In 1668 a scheme was elaborated to
regeometrize the the whole complex, but it was not carried out
(fig. 3.18). 21
The Absolute Palace

3.15
Versailles. Sketch plan of present building. Courtesy Yale Slide and Photograph Collection
3.16
Versailles. King's private apartments, begun in 1677. After Pierre Verlet, Versailles

3.17
Versailles, dauphin's apartments. After Verlet

3.18
Louis Le Vau.
Project for a geometrical envelope for Versailles, 1668.
Stockholm, National-museum
Absolutism in Naples

In short, we are presented with two distinct phenomena: on the one hand the elaboration, mainly in Italian treatises and notebooks, of a geometric *architectura recta*; on the other the absolute palace, developed via the Louvre, the Tuileries, and Versailles, as a matrix for absolutist rituals. Caserta is the most important attempt to combine the two.

Absolutism in Naples

Just as Naples played its role in the development of the geometric plan, equally it played its role in the development of absolute monarchy. The theorists who perfected the eighteenth-century conception of an enlightened despotism deriving from dynastic myth were, among others, Bodin, Hobbes, Leibniz, Pufendorf, and Vico.22 As by now might be expected, the most important of these for us is Vico—and not only because of his influence in Naples but because his monarchical theory was mythic in tone and lent itself to enhancement by the visual arts. Vico’s theories being partly founded on Pythagorean geometry, a Vichian palace is destined to be geometric and mythic as well as absolute.

To Vico, monarchy (‘rule by the one’) is founded upon the One—one single principle, one goal, one source, one “central man.” That central man is like the number 1, and his realms, subjects, and laws are like the numbers that rise out of 1 and that are grouped in accordance with the laws of mathematical relation. In other words both equality and hierarchy in society are achieved mathematically.23 The One produces the other numbers that in their proper groupings reign over human affairs. One, or the monarch, guides society as an architect rules mathematically through lesser virtues, assistants, or skills: this is what is called ‘architectonic justice.”24 The laws of public order provide that those subjects in a kingdom count who are wise and worthy.25 The scheme is Pythagorean—and Vico in fact pays homage to Pythagoras as the Italic philosopher and as the greatest “increment” among philosophers, as the one who founded architectonic justice. “Hence Pythagoras located human reasoning power in number,” he explains, “that it might attain to [or perfect] the universe, like a most pure and brilliant light; so that whichever way you turn your mind’s eye, Reason directs the eye’s rays, and all that is called knowable, and all its parts, you see together as it all responds, accords, and consists as beautifully as is possible in one point of thought.” This is the essential oneness of all knowledge through which social damage and benefit can be calculated numerically.26

Architectonic justice, anchored in number, is indeed the cause of all things. It surrounds, controls, pervades the laws of private property, of the merit of subjects in a kingdom, and of their dignity in a phenomenon called *lex rectrix*. The *lex rectrix* consists of the laws that correct inequities in acquisition, disposition, or possession. The just measures of the latter things are in turn called the *lex aequatrix*. Both the “restituting” and the “equalizing” law are dependent on architectonic justice because they work through number, and number in turn “plants” propriety in the soul of the legislator, the monarch.27
Because for Vico law is basically a variant of mathematics and specifically of geometry, the measures of law are arithmetical and geometrical series. When persons are equal before the law arithmetical justice is invoked. Its magnitudes are equal as in an arithmetical series. Where persons are unequal before the law, as children before parents, tenants before landlords, or mortals before God, a double, or geometric, mode of justice pertains. Contracts, punishments, taxes, rights, property, privileges—all of law and government—are in these cases reducible to geometric principles. The principles are truly geometric, rather than numerical, first because geometry makes concrete the abstractions of mathematics yet does not betray them and second because geometric series, like society itself, are built up from unequal magnitudes.28

The power of the ruler, the One, must therefore be absolute. As 1 rules through its subsidiary numbers; as, again, architects rule through subsidiary virtues and assistants, so monarchs rule through courtiers, ministers, departments, armies, which have given up their own power to the mon-arch, the ‘one-ruler.’ Keys to the natural order, monarchs are driven from office only by their vices, never by the true will of the multitude. They command auspices, consorts, families, tribes, nobility, fields, imperii, rites, and laws of tribute; they are consecrated to the highest religion, sealed to the highest nobility, protected by the highest sovereignty, with power of life and death over their subjects. The laws of war and peace are invoked by monarchs on the authority of auspices and chance. The respublica (the common wealth of property and institutions) is composed of pure monarchy. It has one purpose: its own preservation and glory, its dynastic extension back into time, forward into the future, and outward in space. It has one life, which pervades the whole territory of the realm and the soul of every subject within it. As, in Pythagorean mathematics, 1 pervades all other numbers, and as all other numbers proceed from 1 and return to it, so the monarch pervades his people; and so, too, humanity in history proceeds from early, tribal, family-based monarchy to oligarchy, to republics, to democracies, only to return to monarchy—but this time to a massive and civilized one, the “absolute” monarchy in which tribes and families are transposed into nations and empires.29

Because of the unique power of the throne the monarch is pure. Forced to give no law except at the bidding of the One God, the monarch is not only free but is freedom itself. The free judgment exercised conforms to the monarchical system that reigns in Nature. The all-pervasiveness of the monarch is that of Nature and of Nature’s God. Nor can the ruler’s subjects envy this power, for they possess it, being contained within its oneness. The authority of our ancestors, who are the objects of our inevitable mythopoeic powers (like Hercules and Apollo), flows universally to the One Ruler, the embodiment of all deities. And, as with Jove, whatever pleases the ruler or places itself in the ruler’s mind as law to be enacted, has the force of law. The freedom of the throne includes and must include the freedom to be utterly arbitrary, and even to seem to be immoral, as a god might be.30
As a Bourbon, Carlo di Borbone was ready to fulfill this ideal. For his family dreamed Vichian dreams—or perhaps Vico poetized Bourbon dreams. In their “family pact” the Bourbons conjoined intimate relationships like those described in Vico’s primitive monarchy to the grandeur of an empire that girdled the earth: Vico’s modern vast “humane” civil monarchy. As J. L. R. Desormeaux remarked in his *Histoire de la maison de Bourbon* (1772–1788):

A new luster has spread over this house, cherished as it is by Heaven and Earth. Spain, South America, the Two Sicilies, Parma, Piacenza, and Corsica have become Bourbon patrimony. The masters and fathers of so many nations, more united by bonds of mutual esteem than by blood, have laid the foundations of the public happiness by a family pact whose object is to maintain peace and concord in Christian Europe.31

Nonetheless, when Carlo arrived in Naples in 1734 there was no royal palace that even began to live up to these implications. The new king found instead the moldering series of earlier residences: a ruinous and haunted Castel dell’Ovo rising from its promontory in the harbor; the Castel “Nuovo,” the Aragonese fortress of the 1450s, also on the harbor, with its cramped apartments and quaint classical triumphal arch; the Castel Capuano, a royal residence and partly a courthouse; the Viceroy’s Palace, a nondescript building, now destroyed, between the Castel Nuovo and the present Church of San Ferdinando; and various sunk and splintered villas.32

There was also the Palazzo Reale (figs. 3.19–3.21). This stood all across one side of a vast semicircular piazza now occupied by the Church of San Francesco di Paola and its flanking colonnades. The Palazzo Reale was a long, low, three-story building 350 palmi (464 feet) wide. It was of brick, *rosso napoletano*, with gray limestone trim, constructed as a continuous open arcade surmounted by two long, low, windowed stories in 10 bays on either side of a projecting Doric-columned arch, with a balconied window of appearances and, on top, a symmetrical set of three baroque clocks (now reduced to a single central clock in a three-tiered aedicule). Domenico Fontana, who also designed the so-called Bacino Angioino, the now much altered Neptune Fountain (1601) in the Piazza Bovio, and the Church of Gesù e Maria (1593–1603), was the architect of the Palazzo Reale.33 Its length, 350 palmi, its lowness, its plainness and humble brick and limestone; the regular geometry of the facade, where all interest in sculptural event is suppressed, and where number repetition (1, 3, 10), axes, and mathematical distribution reign; these things make of it an understated predecessor of Capodimonte and Caserta. Milizia in 1768 claimed that the original plan had called for three symmetrical entrances with three courtyards behind them—in other words just one-third of Gioffredo’s design (figs. 6.2, 6.3). The palace’s dilapidation (built on soft ground, it was sinking in the mid-eighteenth century)34 and its squalid chambers, even though they looked out on magnificent courtyards (fig. 3.20), made it in those years more of a counterpart to the Castel Nuovo than to anything that Carlo would have desired.
Domenico Fontana
(with later niches by Vanvitelli). Palazzo Reale, Naples, 1600–1602. Photo Alinari
Absolutism in Naples

3.21
Engraved plan of the Palazzo Reale, Naples, before 1837.
Naples, Biblioteca Nazionale

3.20
Palazzo Reale, Courtyard
Although Vanvitelli’s greatest achievement lay in the geometries of Caserta, he did something to add to the geometrical interest of the Palazzo Reale as well. He filled in some of the outer arches in the main facade, supplying the niches for the present colossal nineteenth-century statues of the kings of Naples, including a fine Carlo di Borbone by Raffaello Belliazzi. He also rebuilt the foundations under the royal apartments (second floor, right-hand side).³⁵

In filling in these arches Vanvitelli created a new and interesting rhythm of bays. There are five types of arch: (1) closed, with window; (2) closed, with niche; (3) open, with iron gate and Doric flanking columns; (4) open, with gate and pilasters; (5) central, open, and flanked by pairs of supports and panels or bays narrower than normal. The arrangement, left to right, is

\[(1 \ 2 \ 3)(2 \ 4 \ 2 \ 4 \ 2 \ 4)(5)(4 \ 2 \ 4 \ 2 \ 4 \ 2)(3 \ 2 \ 1) \]

\[(3) \ \ (6) \ \ (1) \ \ (6) \ \ (3) \]

The second row of figures represents the number of elements in each of the five sets. Unlike the facade sequence in Scamozzi, this one reduces to

\[3 + (3 + 3), 1, (3 + 3) + 3. \]

Thus the five bay types are generated out of 1s and 3s, which become the sources of the other numbers or distributions in the design. Something like the principle Leibniz used for his binary arithmetic is brought to bear. But the numbers just listed do not reflect either proportions or dimensions, only types. As can be seen from the plan (fig. 3.21), the bays are irregular in width, and their irregularities do not correspond to the variations in type. Nonetheless there are two kinds of symmetry: the mirroring of the whole facade on either side of the 1 and translational symmetries in two of the sets, namely those constructed of \((2, 4, 2, 4, 2, 4)\) and \((4, 2, 4, 2, 4, 2)\).

Fontana’s plan, though in some respects comparable to Bramante’s Tribunali Palace in its large main courtyard with five entrances per side and, on axis, a royal chapel, is neither geometrical in arrangement nor absolutist in scale and function. The perimeter is irregular, the grid is ad hoc, and the spacing of repeated elements such as the windows of the main facade is not uniform, though this fact is minimized. Carlo’s Spanish soul probably objected to the staircases, which are narrow and ill assorted. All in all the Palazzo Reale was a poor thing after the Escorial, Buen Retiro, and the other palaces the king had known as a boy. Nonetheless, with its vast piazza at the center of the city, the building remained the focus of Carlo’s urban ceremonials and was the object of an important program of fresco painting.³⁶

The first real step on the road to Caserta was Capodimonte, begun in 1738, only a few months after Carlo became king (figs. 3.22–3.26).³⁷ Capodimonte stands on a majestic hill, formerly called Miradois, north of the city. In Carlo’s time the place was completely cut off from the town. The peculiar topography of the site also meant that it could have no monumental entrance boulevard and no axial relation with its garden.
Antonio Canevari and Giovanni Antonio Medrano, Palazzo di Capodimonte, Naples, 1738–1838. Photo Alinari
3.23
Capodimonte from the side. Photo Alinari

3.24
Capodimonte, courtyard. Photo Mimmo Jodice
3.25
Capodimonte, plan of ground floor. Caserta, Reggia

3.26
Capodimonte, plan of main floor. Caserta, Reggia
or with the parts of the city it abutted. But these were not important considerations for a simple hunting lodge perhaps, and at first Capodimonte was only that.

Yet the new palace was potentially much more than a hunting lodge. It was a larger building than the Palazzo Reale itself. The original architect had been Giovanni Antonio Medrano, a military engineer who, according to some, appropriated designs made by his former coadjutor in building the Villa Reale at Portici, Antonio Canevari. Another architect involved with Capodimonte was Angelo Carasale. Carasale had been in charge of erecting the foundations, and their cost greatly exceeded expectations. Confronted by this typical Neapolitan mess Carlo abandoned active prosecution of the building when only about two-thirds of the walling was in place (the south and central courtyards) and only the main floor habitable. The palace remained for years, then, an unfinished ruin (somewhat like Cosimo Fanzago’s Palazzo Donna Anna of 1642 on the via Posilippo). Nonetheless it was eventually completed in accordance with Medrano’s plans, though one completely new idea is the present great staircase of 1835–1838 by Tommaso Giordano in a glorious Paestum Doric.

This staircase is not shown in the drawings reproduced in figures 3.25 and 3.26, which seem to have been made in Vanvitelli’s office (since their inscriptions make it clear that they are not the work of the original architects, nor of Ferdinando Fuga, who had made a project for finishing the building). Fuga’s suggestions, however, are marked out in gray. The drawings probably date from the 1750s. The disposition and assignment of rooms are very much a foretaste of Vanvitelli’s own scheme for Caserta. Thus the ground floor consists entirely of circulation and storage space while the main floor is divided into two suites of 26 rooms each, one the mirror image of the other: that on the left is for the king and the other for the queen. Within each of these identical apartments are sequences of guardrooms and waiting rooms (B, C); reception halls, or Halls for Greeting (D); and living quarters (E, F)—exactly as would be the case at Caserta.

Despite its long abandonment and scandal-ridden origins, Capodimonte is undeniably an impressive building. Like the Palazzo Reale it exploits deep colors: a brick of rosso napoletano and stone pilasters and entablature, though in this case dark gray piperno is used rather than limestone. Compared to the Palazzo Reale the building is vast, even sublime. Unlike Fontana’s structure it is composed of clear, uniform modules consisting of double cubes set vertically within colossal Tuscan pilaster-group bays. It is in fact fully a geometric palace and of the finest type. The two long main fronts are 13 bays in length at the piano nobile and mezzanine levels. The whole is set over a rusticated Doric basement. In this basement are three central arched entrances and, on each side, a single, similar arched entrance. There is thus only one type of bay above and only two below, either arched or windowed. The terminal wings project forward one bay and are two bays wide and nine deep.
The whole outer shell of the building is composed of one-, two-, and three-bay groupings of the module. The two main facades, formed of wings, main block, central axis/door, main block, and wing, make up the reflected distribution:

2 6 1 6 2,

an elegant, self-generating set. It springs, left and right, out of the 1 and moves to a double three (2 × 3), then to 2 (2 × 1). So the facades arise from 1, 2, and 3, and then move back the same way to 1. The flanks are arranged into simpler palindromes of 4, 1 (entrance) 4, the 4 rising out of the main-facade sequence of 1, 2, 3, and leading round the building to the adjacent long facade, hence back to 1. In a word, mirror symmetry prevails, unmixed with the translational symmetry that Vanvitelli used in the Palazzo Reale.

There is a low parapet above the entablature, which appears only in the form of engaged impost blocks over the tops of the main-floor pilasters. Within, the palace consists of three great square courtyards of similar size, symmetrically set, each three bays square, the module here being the same as for the exterior (fig. 3.24). Hence the overall plan comprises a uniform grid or hypostyle of columns that measures 18 across by 10 deep, 180 in all. It can be seen as a geometric abstract of an ancient temple of the larger sort.

The original plan of Capodimonte was greatly altered when the building became a museum after World War II. However, the plans in figures 3.25 and 3.26 reveal much about the original Medrano–Canevari scheme. It possessed a level of geometric precision and interest well beyond that of any of the plans so far discussed. The whole is perfectly mappable onto a regular grid (fig. 3.27). The seventeen bays of the main facade, and the nine of the sides, can be read as modules divided into what may be called micromodules. The latter establish all of the interior and exterior walls of the building, and within this grid the plan of every room is limited to one of the following nine proportions (measured in micromodules):

1:1 3:2 4:2 4:3
5:3 5:4 10:5
10:10,

which can in turn be reduced to

1:1 2:1 3:2 4:3 5:3 6:5.

These are, respectively, the square (1:1), the double square (2:1), the sesquialter (3:2), the sesquiterial (4:3), the superbipartiens tertias (5:3), and the superpartiens quintas (7:5).

Finally, a glance back at the mirrorings generated by the facade piers shows that the rooms along the main (but not lateral) facades are susceptible to a breakdown similar to that given for the micromodular structure—similar in principle, that is, but with different constituents:

(2 1 2) (3 3) (5) (3 3) (2 1 2).
Capodimonte, main-floor plan mapped onto a grid
which reduces to the following arrangement of three-, two-, and one-member sets:

\[3 \ 2 \ 1 \ 2 \ 3. \]

In this sequence, as in the pilaster sequence, there are the reduction to differences of 1 and a palindrome symmetry centered on that number. All these qualities and more are to be found in Gioffredo’s and Vanvitelli’s designs for Caserta. Such designs constitute a mathematical poetry of architecture that matches Vico’s number poetry and his notions of the arithmetic and geometric rule of law.

Not only did these ideas appear in actual Neapolitan buildings; they were given a later, theoretical expression in Niccolò Carletti’s Newtonian treatise published in Naples in 1772. This treatise makes architecture into a subdivision of geometry and celestial mechanics. Thus in Book I, Observation I, Carletti states that the best, solidest, most permanent supports are prisms and cylinders arranged in straight lines and groups at right angles, with bases parallel to the horizon, and set vertically or else in accordance with the “lines of direction” of cones and pyramids (Book I, Corollary V). Carletti prints a set of stylized grid plans based on this principle. In placing the supports, the proportions of the human body are used, namely:

\[1:1, \ 2:1, \ 4:1, \ 10:1, \ 3:2, \ 6:5. \]

These ratios may vary with race, according to Carletti, the Ionians, Corinthians, and Dorians, who invented the three basic orders of architecture, having used slight variants on the formulas. The formulas in turn impinge on the load-bearing possibilities of buildings in the three different styles or in styles such as the Composite that are derived from them. Arithmetical and other series are derived from these ratios to construct plans and elevations. Carletti particularly advocates number sequences whose intervals can produce still other such sequences. And the laws of the mathematical constructs lead, he says, to the “unwritten laws” of the peoples, apparently to something like Vico’s primitive \textit{ius naturalis}.

\[63 \]
Royal Architects

Carlo di Borbone

The title of this chapter is to be taken in two ways. It refers as might be expected to two architects who served the king, Mario Gioffredo and Luigi Vanvitelli. But it also refers to the king himself. For Carlo di Borbone was a royal architect in that he practiced architectural drawing and design, in that he brought to his role as patron a forceful sensibility that contributed specific ideas to Gioffredo’s and Vanvitelli’s projects, and in that, in the civic festivals held in his honor, he appeared as a mythic builder of cities and palaces, as the architect of a new urban civilization.

To Vanvitelli Carlo di Borbone was truly a “civil, humane monarch,” the greatest and best of men and kings. Amid all the paranoia, jealousy, and hatred directed at his fellow human beings in the Letters, this golden thread shines, and it shines long after the moment when Vanvitelli finally realized that the king would never call him to Spain to continue the patronage begun at Caserta. Nonetheless, to Vanvitelli Carlo was always an Apollo, an Aeneas, a Hercules, arrived to build capital and kingdom anew, whose abandonment of his protégé was not betrayal but tragedy: “In sum, His Catholic Majesty has been in all ways the Maecenas of his family; the misfortune of his departure, leaving [us] in the hands of two mean-thinking, mean-acting men [the Prince of Sannicandro and Tanucci, in 1766 respectively head of the Regency Council and Prime Minister] has done immense harm.”
Carlo di Borbone

Carlo, that man of palaces, was born in the Royal Palace at Madrid on January 20, 1716, and lived successively at Colorno (Parma), the Pitti Palace, the Palazzo Reale in Naples, at Portici, and in his various Neapolitan palaces and villas in the countryside; and then in Spain in the Royal Palace at Madrid, at Buen Retiro, and at Aranjuez. He died on December 14, 1788, at the Escorial. He never actually spent a night under Caserta’s roof.2

He was the son of Philip V of Spain, Louis XIV’s grandson, and of Philip’s second wife Elisabetta Farnese, Duchess of Parma. Through his mother and through a rather uncertain inheritance derived from her, Carlo was the heir of two nearly extinct houses, that of the Farnese and that of the Medici. His magnificent Renaissance dwellings in Spain and his connection with two of the greatest families of the Italian Renaissance were auguries. Philip’s two older sons by his first marriage, Luigi and Ferdinando, at the time prevented any expectation of Carlo’s succeeding to the Spanish throne. Everything favored an Italian career, one aimed at the reconstruction of Italian greatness.3

It was a period when France and the Italian states feared the power of the Hapsburg imperial hegemony. To forestall this threat a matrimonial tie was established with the Austrians when Carlo and his younger brother Filippo, still children, were engaged respectively to Maria Teresa and Maria Anna, Hapsburg archduchesses. But in the end Carlo married a Polish-Saxon princess, Maria Amalia, daughter of Augustus III of Poland. She was a cultivated woman who, at least in artistic matters, ruled equally with her husband.

In the years immediately before Carlo’s accession in Naples the Austrian emperor held Southern Italy as one of his appanages. So the idea of an independent Bourbon-ruled Italian kingdom was welcome to most of that part of Europe that stood against the Hapsburgs. Carlo’s accession would be a fourth leg in a family empire—the family pact—with Louis XV on the French throne, Carlo’s father Philip ruling “the Spains and the New World,” Carlo ruling the new Kingdom of the Two Sicilies, and young Filippo Parma and Piacenza.4

The infant Carlo’s education had been the business of an aya, or nursemaid, of the most conservative Spanish type. When he was seven she was replaced by a male counterpart, the count of Santestebán del Puerto, José Manuel de Benavides y Aragón. The regime inculcated the fear of God, absolute chastity, and fanatical emphasis on the prince’s importance, along with the ceremonial recognition of that fact.5 Carlo also learned the classical languages, history, warfare, drawing, and geometry.

In 1731, at fifteen, he was put at the head of an army representing Europe’s anti-Austrian interests. With this army and aided by a number of diplomatic pacts, he made an easy if rather slow progress through Hapsburg-occupied Italy, with long sojourns in friendly cities such as Florence. When he arrived at Naples a large Spanish fleet lay in the harbor to quell any disturbances by the pro-Austrian faction. Carlo entered the city on May 10, 1734. On July 3 of the following year, in Palermo, he was crowned. The Kingdom of the Two Sicilies (which got that
name slightly later) comprised a large territory: all of Southern Italy including Sicily (fig. 4.1). In other words it reconstituted Mazzocchi's Magna Graecia or Pythagorean Commonwealth. Carlo di Borbone, with Carlo Emanuele of Savoy and the Pope, was in fact one of the three most important rulers on the peninsula. And Naples, whose population rose from 270,000 in 1734 to 347,000 in 1766, was one of the largest cities in Europe, if also one of the poorest.

In appearance Carlo was a thin, unprepossessing man. A curvilinear face, two round and popping eyes, and a V-shaped mouth, surrounded by fluttering velvets and armor, appears in the portraits (fig. 4.2). The king’s hands and face are said to have been unusually red, the rest of his body unusually white. Sir Harold Acton writes that he resembled “a very distinguished ram.” The total effect, however, was of a wry, clever person. Both he and the queen were rawboned and unheroic—though perhaps one ought not to call Maria Amalia unheroic for, astride her cautiously rearing horse and dressed in breeches, frock coat, boots, powdered wig, and tricorn as painted by Francesco Liani, she is a dead ringer for George Washington (fig. 4.3).

Carlo di Borbone was an activist king but suffered from his family failing: depression, or melancholia as it was then known. The reason he had to abandon Naples for Madrid in 1759 was that his elder brother Ferdinando succumbed to this same condition.

Curiously enough Mazzocchi’s inscription for Carlo’s statue in the Foro Carolino makes unambiguous reference to this:

4.1 The Kingdom of the Two Sicilies. From Saint-Non
4.2
Francesco Solimena.
Carlo di Borbone at the Battle of Gaeta. Caserta, Reggia

4.3
Francesco Liani.
Portait of Queen Maria Amalia, c. 1755. Naples, Capodimonte
HE STRETCHED HIS SINEWS AGAINST THE MELANCHOLY OF YOUTH; THAT WHICH DRIVES THE LAZY DRONE FROM HIVE TO HONEYCOMB TURNED HIM IN TIME OF LEISURE TO THE ARTS.9

Carlo had absolute power, but (pace Lord Acton) he was far from being absolutely corrupt. His policy was ameliorative and reformatory though decisively against Enlightenment principles with their emphasis on the citizen’s individual freedom and conscience. Like everyone else in Naples the king was obsessed with the ruinous economy of what is called today the Mezzogiorno.10 Economic benefits were supposed to derive from the building of Caserta; Carlo’s whole program, in fact, involved creating jobs through works of magnificenza, or public construction. Building the country villas and palaces, of which there were seven, included the creation of gardens, of forest, field, marsh, and water preserves, and of access roads, aqueducts, and the like, all of which improved the economy and ecology of the region.11

Aside from conferring these benefits, Carlo rebuilt his capital as had not been done before. He laid out new streets, erected the Teatro San Carlo (begun in 1737 by Medrano), the Albergo dei Poveri (1751 on, Ferdinando Fuga; fig. 4.4),12 backed the rebuilding of the great churches of Vanvitelli and Gioffredo, inspired noblemen to build palaces, and created other immense structures of a more workaday nature such as barracks, warehouses, and aqueducts. The Foro Carolino (fig. 4.5), complete with Mazzocchi’s inscription, was at first conceived as a rich exedral setting for an equestrian statue of Carlo with colossal rooftop saints and fountains populating a chain of triumphal arches. In this form and in the much simpler form in which it was built, the Foro Carolino was the city’s expression of thanks to its urbanist monarch. Carlo seems also to have been involved in the early phases of the much larger Largo del Palazzo (now Piazza Plebescito) in front of the Palazzo Reale,13 while his porcelain works at Capodimonte produced some of the most charmingly ebullient china (fig. 4.6) made in the eighteenth century.14 The new palaces and churches were almost invariably decorated with intricate fresco and sculpture programs.15 The careers of important painters such as Domenico Mondo, Sebastiano Conca, Fedele Fischetti, Francesco Celebrano, to mention only a few, and of sculptors like Francesco Queirolo, Paolo Persico, and Gaetano Salomone were bound up with these projects. It was Carlo, too, who brought to Naples the incomparable Farnese collection of classical and Renaissance art, with its Titians, its Raphael’s, its Annibale Carracci, and its splendid corpus of Roman and Hellenistic sculpture.16

But not all was glory and growth. The Farnese collection and its early fate is a case in point. On arrival the objects were stored in the hallways and stairwells of the Palazzo Reale, leaning against the crumbling walls that Vanvitelli’s workmen were shoring up and that Carlo’s artists were then to fresco with the glories of Hercules, Aeneas, and the House of Bourbon. Visitors complained that in the midst of the mess urchins pissed on Correggios and Titians. In 1755 it was decided that Capodimonte ought to house the collection. But here the squalid scenario simply continued and the masterpieces were displayed,
4-4
Ferdinando Fuga.
Albergo dei Poveri,
Naples. From Sasso,
Monumenti

4-5
Vanvitelli. Alternative project for the
Foro Carolino. From Sasso
4.6
with proleptic surrealism, in unfinished rooms, some of them windowless or even roofless.17 Contemporaneous descriptions of Capodimonte and the Palazzo Reale, their masterpieces in scattered disarray, their vaults open to the sky, remind us of Hubert Robert’s famous vision of the Grande Galerie of the Louvre in ruins.

It was not until 1782, under Ferdinando IV, that the court painter Jakob Philipp Hackert was charged with setting the pictures in order and restoring some of the damage. Between 1806 and 1808 Giuseppe Buonaparte decreed that the Farnese collection was to go to the Palazzo degli Studi (now the Museo Nazionale). Only in 1834–1836 was Capodimonte completed. And only in 1947 did it become the exemplary museum it is today and the home of the Renaissance and Baroque objects in the Farnese collection, as well as of a large group of works dating from the reigns of the Bourbons themselves.

Carlo not only had studied drawing but was in fact an architectural draftsman as well as a patron of architecture. He is even said to have made a print depicting the Virgin and Child and to have maintained a studio in his private apartments.18 He was never happier than when at his drawing board, he said, and when Vanvitelli told him that he intended to make architects of his sons the king replied, “You will do well to make them follow that most excellent art, which is the noblest one there is. When I have compass and ruler in hand I cannot help but design something.”19 The king was credited with important specific elements in the design of Caserta. He also designed a new portal for the palace at Portici. Without telling Vanvitelli who had made it Carlo showed it to him, in the form of a model, and asked for Vanvitelli’s opinion. The architect cagily replied that the basic idea was excellent but that the iron gate should be wider. The king said, “know then that the idea is mine, but I have not been well served [by the model-maker],” showing Vanvitelli his original sketch to prove the point.20

Carlo also wrote about architecture. As soon as he arrived in Italy his interest appeared in his letters to his mother. He was struck, he said, by the superiority of Italian to Spanish buildings. He saw Florence, living there in the Pitti Palace, and was also enthusiastic about Colorno, the Farnese residence at Parma, which had become a Bourbon possession. This palace, Carlo found, was superior to the one at San Ildefonso. Colorno is in fact a standard Serlian form, a rectangle with four projecting corner towers. It is small and skewed but otherwise geometrically the same as Louis XIII’s Versailles and as Mario Gioffredo’s mighty scheme for Caserta. Colorno also possesses a long chain of similar rooms in perfect alignment, with doors on axis, so that one can look down an endless perspective called a \textit{fuga di stanze}, ‘flight of chambers,’ as if by aligning enough of these ornate parallelepipeds they would seem to rise into the air like a file of birds. This device reappears in Carlo’s own buildings, especially at Caserta.

Carlo was particularly enticed by the mathematics of architecture, so much so that when the \textit{eletti}, or syndics, of Naples in 1758 addressed the king on the subject of the proposed Foro
Carlo, they hoped their design, under Carlo’s scientific gaze, would be corrected by his extraordinary mathematical knowledge.\(^2\)

Carlo di Borbone was a royal architect, then, in at least three senses. He was himself a designer; he employed architects whose work he closely supervised with the eye of a designer; and he built on a munificent scale. After more than two centuries of torpor under viceregal rule the city was royal again, and this new royalty was Carlo’s greatest monument. Naples became a true capital, not only of and through its architecture, but of music, economics, philosophy, painting, sculpture, and the decorative arts. Its gaiety, beauty, and theatrical bizzarria were only sharpened by its sloth and disease. As the king’s panegyrist D’Onofri put it: “In the course of a few years, thanks to Carlo’s building activities, an astounded Naples scarcely knew herself.”\(^22\) It was not only Vanvitelli who wept at Carlo’s departure. Tanucci, the architect’s persecutor, lamented, “Oh how changed, and daily changing, are country and court, and what sorrow those of us feel who, bred in an age of gold, must live in this age, which turns from iron to lead!”\(^23\)

The Mythic Builder

If Carlo di Borbone rebuilt Naples as a stage set, it was one designed for himself and his family. The major events of the king’s life in Naples were marked by civic festivals glorifying Carlo’s several mythical selves. These festivals belonged to the people, and they were planned by local architects in the popular barocchetto style perfected by Ferdinando Sanfelice, Domenico Antonio Vaccaro, Vincenzo Rè, and the notorious, irrepressible Tagliacozzo Canale.\(^24\) They consisted of large temporary structures—towers, temples, obelisks, arches of triumph, and the like—erected in front of the Castel Nuovo and the Palazzo Reale. Similar, lesser structures were usually built by local organizations such as confraternities and parishes throughout the city.

One type of “machine,” as these erections were called, was the cuccagna. This was a piece of temporary architecture covered with bread, meat, cheeses, fruit, and vegetables, and equipped with fountains of wine. At a certain moment in the ceremonies, the signal being given by the king, the lazzaroni would swarm over the structure and make off with its contents.\(^25\) (One recalls, as an inversion of this custom, the sacking of the food shops by these same street people during the famine of 1764; and also the play of food imageries on the Fontana Santa Lucia, fig. 2.5, which like other Neapolitan fountains can be seen as a marble cuccagna.)

What mythical guises did the king adopt on these occasions? Most often he appeared as a city founder like Cleanto in Mestasio’s Partenope. In 1735 when Carlo returned from his military expedition to Sicily he was greeted as an Aeneas. The title page of the souvenir book issued to mark the occasion shows (fig. 4.7), in an oval frame, Parthenope the siren on the right welcoming the Virgilian savior enthroned on his galley. On the left the Sebeto hails its new lord. The Virgilian note is reinforced by
a quotation from _Aeneid_ V 150 on a banderole: "the hills respond with thunderous clamor." The phrase occurs in Virgil's description of the nautical games between the Trojan visitors and the Italic natives. It is a prelude to victory for Aeneas and his forces—their first successful foray onto the Italian mainland. And the use of this quotation in Carlo's festival entails what the phrase entails in its original setting: it is a prelude to the hero's rebuilding of a city, for Virgil has Aeneas rebuild Puteolum before he visits the underworld; and ultimately, of course, he will rebuild and rename Rome. Carlo is a second Aeneas and Naples a second Rome, the quotation implies, welcoming its foreign ruler.

The festival proper was in itself a new city. Temporary triumphal arches and a processional way were built leading from the royal barge's dock near the Castel Nuovo up a flight of stairs to the Palazzo Reale. There a large room was decorated with an oval cartouche bearing the words "Beloved of God, Present Guardian of Italy and Worthy King, your Reign Restores to our Lands the Fruits of Our Fields." These lines paraphrase Horace's Ode to Augustus (_Odes_, IV 14). They complete the earlier evocation of Aeneas as the original founder of the imperium that Augustus was to inherit and climax with this second prayer to Augustus himself as yet another rebuilders.

Above the cartouche with Horace's words was an obelisk, symbol of a race well run, and San Gennaro, patron of Naples, blessing the king. Here the souvenir book introduces a mythic tribe of royal ancestors and welcome for the conquering hero: "From Astipalea and Neptune was born Anceus; from his wife Samia, daughter of the river Meander, he had Perilaos, Eundos, Samos, Altersus and Parthenope. From her and Apollo was born Licomedes." In this further variant on Parthenope's multiple ancestries Neptune becomes Parthenope's progenitor, and her marriage to Apollo is perhaps a tribute to, or cause of, her sweet voice. In any event Apollo is another key figure in Carlo's family of mythic cousins and will figure prominently at Caserta. So too will Hercules, who is also present to greet Carlo. On this occasion Hercules stands on a fountain, a triumphator, club on shoulder and the slain Lernian Hydra at his feet. He signifies Carlo's conquest of Sicily—for, explains the text, it was Hercules who had killed Sicily's king Eryx. As Vico would say, Hercules thus cleared the Sicilian wilderness of its barbarian infester and triumphantly harnessed its waters so that agriculture, commerce, and cities could be built.

Vico was only a background figure to the festival of 1735. But he was much to the fore when, three years later, Carlo and Maria Amalia celebrated their marriage with a more poetic festival staged by the university faculty. This consisted of several days' worth of eclogues, orations, and other works including opera. The leading orator was the future royal historiographer. His speech develops many of the mythic themes alluded to here. Hercules-like, the arriving king comes with his ships from Hesperia and debarks at Parthenope's shrine. The queen is hailed as a Saxon princess whose native tongue leads back to the
founder of all esoteric knowledge and to the Egyptian fountainhead of all Italic greatness, Hermes Trismegistus. Vico then portrays Carlo in the two mighty aspects of his future reign: For, when he rides on his horse in amiable ferocity, he is seen to be the emperor worthy of his arms; presiding from the royal saddle he hears the desires of his subjects and is seen as the king entering into possession of his kingdom not by virtue of his birth but by virtue of conquest. When, standing in his royal palace, he admits his princes to the adoration of his hand, he is venerated as the simulacrum of God on earth.27

Both portrayals refer to frequently performed rituals: the king on horseback, during processions or even out hunting, and his solemn entries around the countryside, moving from palace to palace or entering a town. The other portrayal shows him at the baci amano ceremony.

The latter is described by Vanvitelli.28 On these occasions an invited circle of ministers, ambassadors, and guests—men and women of the aristocracy of merit as well as hereditary vassals—fill a large salon and one by one approach the sovereign, kneel, and kiss his hand. Conversations ensue. It was on these occasions that Vanvitelli’s relationship with Carlo and Maria blossomed, and that the architect showed off his plans and models and received royal criticism and praise. The two planned Halls of the Baci amano were to be the principal state rooms at Caserta. The ceremony itself, a form of homage, was a psychological, political, and ceremonial necessity. It was a continual oath-giving by those whose new liege lord was this latest in the succession of conquering kings—in Vico’s language, \textit{reges ad regnum ne dum nati, facti videntur}, “kings seen to have been made so, not born to it.”

The hand-kissing ceremony, occurring as it did in a royal palace, expressed the double structure of Carlo’s kingdom. One wing of this structure consisted of an appointive bureaucracy, which was on the rise and which was composed of what the philosopher called the “optimates.” This wing drew its power from the other wing, that of the “patricians” (those who inherited power from their \textit{patres}). The latter wing was symmetrically placed within the political configuration of the realm, but during Carlo’s reign it suffered a net loss in power. The two wings were thus truly symmetrical: they were mirror images of each other, one positive and growing, the other negative, shrinking in power, hence illusory.29 The construction of Caserta, we shall see, is an instance of the seizure of patricians’ land by the king and his optimates. The new palace’s architecture and that of the gardens and town proclaimed this victory.

This same theme, namely the welcoming of Carlo and Maria Amalia as foreigners who ruled by conquest rather than by birth, is struck by the next participant in the ceremony, Biagio Troisi, who reads some Sannazarano hexameters:
And then, startled by the clamor from Her cave, which gaped on Capri's eastern cliff, Beautiful Parthenope did hear The king arrive and, swifter than the wind, She crossed the sea with all her nereids. Round his chariot on the flowery shore
They paused, and knelt across the glassy waves.
Then, crowned head raised to Heaven, she
Gave thanks, and offered with abundant hand
Sea gifts to her lord: a mirror set
With coral and with marvelous blue gems,
Where Persian purple shone like glistening fruit:
"Hail, hope of this disintegrating age
In Italy, sent by noble Heaven."

The scene recalls that in figure 4.7. There follows a long speech in Carlo’s praise. The poem goes on to describe Naples’ newfound architectural glory, dressed as the city is in the decorations her people have constructed. The whole town seems one great palace ablaze with torches and works of art. But the greatest part of the procession that moves through it all, says Parthenope, is devoted to herself. There are other scenes of Diana and Neptune, and a cucagna is described. Then, after honoring Sannazaro’s tomb at Mergellina, the siren and her nymphs slide back into the sea.

Troisi’s beautiful poem is conceived as a wave of welcome flooding the city with nymphs and leaving upon it a sediment of abundance as the siren goddess and her cohorts disappear into their blue depths. It is an appropriate reversal of Vico’s conception of Neptune who, until the god is controlled, floods the city with devastation. Other poems of welcome struck similar themes. Isidoro Sanchez de Lana’s verses end with a picture of Maria Amalia pregnant, another alma mater like the Parthenope who nursed Ovid; and like Parthenope Maria will give birth to poets.
In two sonnets (of a group of four) also written to commemorate this event, Vico emphasized the new spirit of pan-European importance that, with Carlo’s arrival, filled the capital. Sirri has called it “the reconquest of Europe.” Vico duly celebrated a restoration and expansion of the Roman Empire:

Stretching from the kingdoms of the East
West to the sunset lands, and rolling south
To Araby, our empire only ceased
Northward at the icy Istro’s mouth.

But then in Italy a prudential king
Whose brethren rule the Frankish lands, arose;
Iberians to his sire their tribute bring,
And his remoter blood is Scipio’s.

Still other allies light his holy bride
Her way from that cold land whose western face
Frowns upon Asia’s dark and polar blast.
Son of Aeneas! Rebuild Aeneas’ pride!
Return the stolen prizes to their place,
And make Italian empire whole at last.

The second sonnet is to the architect of the scenographic machine erected in honor of the marriage, Ferdinando Sanfelice:

With vastness, of all termination free,
Of palace, temple, obelisk and tower,
With kingly thrust of high immensity:
So Memphis stupefied earth’s early hour.

But now, Fernando, to the singing world
Your well-praised genius, in time’s shortest space,
Has vaster marvels to our age unfurled,
And given it new glory and new grace.

That you might swiftly build this noble scene,
Serving human duty and desire,
Art and Nature lend their richest dress.

So full and lucid is the rare machine
Its sovereign honor lifts it ever higher,
Far above time’s deep forgetfulness.

In the first sonnet Carlo appears again as a member of a Vichian noble family whose destiny is to restore and rule what Aeneas had begun. As usual the poet sacrifices fact to fancy, making the empire of old Rome end at Istria. But this shortfall is to be made up by the addition of Poland and Saxony. The summons, at the end of the first sonnet, for Carlo to conquer what, literally translated, Vico calls “the great unjust spoils” taken from Aeneas probably refers to Carlo’s imminent military expedition to Sicily. In the second sonnet Parthenope replies to Carlo much as she does in Biagio Troisi’s hexameters. Sanfelice’s achievement glorifies the arriving god but also Naples herself.

Precisely these ideas—that the King of the Two Sicilies could become the central radiating point of the New Sphere, so to call it, of a worldwide Italy and that this completion of Carlo’s role would have occurred in part through architectural works in his capital—are presented by Vanvitelli’s vignette from the Dichiarazione (fig. 4.8). A winged Amor armed with Cupid’s bow and arrows and driving Venus’s doves before him makes a triumphal car of an Earth that is set with the Two Sicilies as
an orb is set with gems and whose sea is named “Tuscan.” It is the Two Sicilies but also the “Etruscan” kingdom of Magna Graecia.

Another festival was staged for the appearance of Carlo’s first male child, Filippo, who at birth assumed the title of Prince of the Two Sicilies. This was in 1747.31 To mark the event an elaborate set of festival machines was designed by Vincenzo Rè, who also composed the sumptuous souvenir book and supplied it with splendid engraved plates. The three main focuses were the Castel Nuovo, which was turned into an enchanted castle of light, its battlements outlined with lanterns and punctuated with airy obelisks (fig. 4.9); the Palazzo Reale; and the new Teatro San Carlo. In the Largo del Castello there was also a fireworks pavilion, a sparkling essay in rococo monumentality built up on a stepped octagon like a great finial (fig. 4.10). In the Largo del Palazzo Reale was a vast cuccagna in an arcadian landscape dominated by a rustic fountain of wine and decorated not only with meat, cheese, bread, and other victuals, but with live game and domestic animals wandering in its wooded surroundings: the usual allegorical salumeria, in short, but with the added meaning of the royal huntsman who gives provender to his people (fig. 4.11).

The frontispiece of Rè’s book, meanwhile, is a temple formed not of food nor marble but of gods and goddesses (fig. 4.12). In the background the landscape of Naples, its bay and Vesuvius, appear. In the foreground is a weedy marsh. The sky is filled
4.9

4.10
Rè. Guglia for fireworks in the Largo del Castello. From the *Narrazione*
4.11
Ré. Cuccagna in the Largo del Palazzo.
From the *Narrazione*
with a towering group of figures centered on a tableau in which the swaddled young prince is presented by a winged Victory to Queen Parthenope. She, a massive, draped figure not unlike the Nido river goddess, is enthroned on Misenus’s ruined tomb. Beside her is the Abundance figure of Portici, who lifts a tray of produce as an offering to the newborn babe. This perhaps is his cuccagna. These fruits of Portici’s earth are also the spoils of Herculaneum. On a lower level the Sebeto grasps the spade that had turned him from a wild river into an aqueduct and that symbolizes so much of the subterranean and excavatory nature of Carlo’s enterprises. Sebeto rises from his recumbent posture, hailing his new lord. He echoes the gestures of Portici and Parthenope in doing this. Behind him we glimpse the three sirens (and hence Parthenope again, in her other main role), lifting their voices to the sky. A sea horse prances on one side and on the other we see the marshy shore that had given the name of aquari to the denizens of Naples. There, a nereid peeks timidly out at the spectacle. On the far right a siren and two putti present a cartouche carrying the words spoken by the queen to the infant prince:

With you, new son, new hope, Parthenope
Will all her wealth and blessings share.
You are two kingdoms’ peace: forever be
Worthy of your parents’ care.

In short, a lower, terrestrial and subterrrestrial population, the divinities of the place, equipped with spade and with the earth’s produce, welcome the arriving vortex of universal divinities.
Filippo is central to this conquering foreign cohort. At the very top of the flight of gods, floating in the circle formed by the ouraibous, the circled snake of Infinity, is Faith. Serenely she opens her bosom to the child, her alumnus, while revealing her sacred volume and the lituus, or staff of command. She teaches, she regulates. Seated above the prince and just below Faith, on the allegory’s central axis, is Pallas, armored and shielded. She sets a crown on Filippo’s head in an action that forms the geometrical center of the composition as a whole, as it is also the central action of this cloud of gods. The Graces meanwhile prepare to grant the boy their gifts. Astraea, on the far left, instructs him in the arts of peace: justice, charity, abundance. She is a prefiguring of the great Astraees we shall find at Caserta. Her scales, Vico says, signify the Golden Age of the golden number. On the upper right Mars instructs the prince in war. On the far right center, trumpeting Fame consecrates him to an invisible Immortality.

Parthenope is at once queen, mother, and nurse; and as siren she sings the city’s fascination. The arriving gods float inward in their great cone of clouds and bodies to the music of her lips. Her voice inculcates the message of newborn peace through a newborn rex factus arriving in the weedy wilderness to restore and rebuild. Filippo’s arrival from the heavens, rather than from his mother’s womb, makes of him a conqueror, not a patrician. Rerum spes altera sings Parthenope, in words that can mean ‘new political hope’ but also ‘foreign ruler.’

In Rè’s engraving the local divinities are precisely counterpoised, in gesture and position, to the universal divinities above. These symmetries, like the symmetries of feudal versus royal wings in the government, are negative and positive in value, and specular in their mutual reflections: the Sebeto echoes and refracts the figure of Mars. The two venerable males, one the provider, the other the defender, unite in their gestural opposition. The sirens are matched with the Graces in the same way. Song, fascination, and fatality are reflected in the sirens from the upper imagings of Splendor, Beauty, and Laughter. Herculanum’s treasure from the womb of the past is offered in a gestural response to Victory’s offering from that of the future. Air meets earth. There are exchanges and equilibrated transfers—‘commutative equalizings’ in Vico’s phrase. Parthenope herself, seated on the Eubocean shore, is the prince’s other mother, the mater altera for the spes altera. Indeed she and the prince fully inhabit, almost to the point of indiscretion, the roles of Virgin and Child. Above, Fame flies on the right as pendant to Astraea. The golden age continues, or returns, in the circling architecture of the bodies forming this temple. But that same Astraea also mirrors the cartouche below, which frames Parthenope’s invocation and verbally enshrines the prince’s parents. Parthenope’s poem is, we now see, vague as to who these parents are, and suitably so—or, rather, not vague but all-encompassing. Filippo—poor Filippo, who turned out to be retarded—is here the child of the pagan heavens as well as of earthly civil monarchs. And so Parthenope echoes and visually responds to Faith and to Minerva’s discipline.
Rè's frontispiece says all these things and yet exploits the standard language of rococo allegory. But in using these well-understood locutions it manages to restate all the underlying mythic assumptions examined here: the commutation between upper and lower cities and between hell and heaven; a riverlike flow of myth; the notion of the burial of civilized artifacts; that of the arriving god whose epiphany renews a tribal compact and builds a *nea polis* and the magnetic siren figure on her shore, backed by subordinate denizens, who welcomes arriving ruler-gods. The many parental figures who surround and support Filippo, and their divine nature, are a foretaste of the figures of family romance that will fill Caserta. For no matter how much Caserta asserts its Roman, Vanvitellian nature, it too will belong to Campania, to Cumae, to Parthenope and Magna Graecia, to the Pythagorean commonwealths and to their mythic substructures.

Mario Gioffredo

If indeed Caserta grew out of Carlo di Borbone's dissatisfaction with the Palazzo Reale and Capodimonte, one should consider too the shortcomings of a third palace, that at Portici, begun in 1738 by Medrano and finished after 1741 with interventions by Canevari, Fuga, and Vanvitelli. It is not simply that these structures were perceived to be too mean in scale, or that they had design mistakes—though that was true. D’Onofri explains: “However, the late king Carlo III was not content with these two royal complexes—that is, Portici, for it was too near Vesuvius and subject to tremors and eruptions, and too near the sea for an enemy surprise attack; nor [did he like] Capodimonte, which did not come out in accordance with his ideas. And so he wished to add a third.” Hence Carlo’s third experiment with a residential center, Caserta, is well inland and out of volcanic range. And hence Capodimonte was temporarily abandoned when it was half-built. (See chapter 6 for the architectural ideas that Medrano’s masterpiece failed to fulfill.)

It is at this point, with Carlo’s first impulses to construct a third palace, that a difficult but learned local architect comes into the picture. Mario Gioffredo was born in 1718, so he was eighteen years younger than Vanvitelli and two years younger than the king himself, Carlo being about thirty-four, Gioffredo thirty-two, and Vanvitelli fifty when the Caserta project was first mooted. Gioffredo had an unhappy life filled with calumnies and despair. His existence was dominated by his grandiose rejected plan to build for Carlo di Borbone the most absolute of palaces. Antonio Niccolò Carlini wrote a short vita of Gioffredo after the architect’s death in 1785. He says that Gioffredo studied with the Jesuits and had strong literary tastes, then learned drawing from Francesco Solimena. This was good start enough: it is arguable that, in the 1730s, Solimena was the best painter in Europe. Unhappy with the direction Neapolitan architecture had been taking among the followers of Cosimo Fanzago (d. 1678)—artists like Vaccaro, Astarita, and Sanfelice—Gioffredo (like Vico) became an autodidact. And he returned (again like Vico) to what he conceived of as an austere
classicism that had been betrayed. Gioffredo took literally Vitruvius's famous advice that the architect should know literature, drawing, geometry, optics, arithmetic, history, philosophy, music, medicine, law, astrology, and divinity (the list is not exactly Vitruvius's but an updated eighteenth-century version). Gioffredo traveled to Paestum to draw the Greek Doric temples there and to Rome. "Thus," says Carlini, "was he seen to occupy the fortress of art."38 Gioffredo was apprenticed to Medrano, then presumably at work on Capodimonte and Portici, both of which are austere and classical, "Vitruvian" in Gioffredo's word, rather than being, in Fanzago's manner, filled with sheaves of pilasters, serried entablatures, bulbous convexities and concavities, and deep-twined consoles. And though Gioffredo may have been hurt by Medrano's disgrace he nonetheless kept on with his master's geometrical style.

Gioffredo had one key friend at court: the marchese Giovanni Fogliani d’Aragona, one of Carlo's secretaries of state (and later Vanvitelli's protector as well). Carlini writes:

Hence when Carlo in his auspicious Neapolitan reign decided to build a villa at Caserta in Campania he asked the Duke [sic] of Fogliani, Royal Secretary, for a plan. [Gioffredo] then faithfully took up the idea and made a magnificent layout that is in his heirs' hands. To Carlo and whoever else saw it, it was marvelous. But since the erecting of it seemed too ambitious and sumptuous to the king, Carlo prescribed a smaller scheme that would be easier to afford. But then, unexpectedly, Luigi Vanvitelli, a Roman architect, showed him another plan, which the king accepted.39

"Yet Rome itself vindicated Gioffredo's taste, continues Carlini, "by commissioning him to build there the [facade of the] Church of San Giacomo degli Spagnuoli." Gioffredo was also responsible, in Naples, for Santa Caterina at Siena (1760) and many other buildings. Assembled together in one group, remarks his biographer, Gioffredo's oeuvre would create a goodsized town.

It is ironic that Gioffredo's buildings are so like Vanvitelli's. Indeed in several cases, notably the Villa Campolieto, Resina, and the Palazzo Casacalenda, which contain work by both men, it is hard to tell where one leaves off and the other begins.40 This may be due in part to Vanvitelli's penchant for imitating other architects' styles: he has bragged about his mimicry of Domenico Fontana in the Palazzo Reale. But in Gioffredo's case the mimicry or accommodation went the other way: Vanvitelli was the source. What is yet more ironic is that Vanvitelli and Gioffredo loathed each other. The older architect wrote of his Neapolitan competitor that "it was not possible to find in the world a brasher and more shamelessly slanderous tongue, spitting filth in every direction."41

What is the style that so marries these two mortal enemies? Gioffredo's masterpiece is the Spirito Santo, Naples, which he totally remodeled in 1774 (figs. 4.13, 4.14).42 Behind the mainly 1943 facade stands a vast classic vessel supported by beautifully prominent columns forming a colonnade that moves in a great U five bays deep all around the nave and apse. The
one-bay transepts are mere cubic incidents in this colonnade, as is the chancel, which breaks the curve of the U in the center.

Above the entablature floats a barrel vault. The shafts and Corinthian capitals are of white marble, the simple pedestals and bases of dark gray. Over each chapel, set between the columns, a thermal window (as in a Roman bath vault) breaks the coffered curve of the vault. These windows rise from flat, firm dwarf pilasters. They consist of segmental openings set in front of semicircular ones: a Vanvitellesque feature. Simple, broad moldings and blank panels predominate. Over the crossing is a dome (fig. 4.14) whose cylindrical drum is lighted by aedicular windows. The thermal windows in the apse area have been squeezed narrow. They seem about to spring back into the normative shape, an effect that emphasizes the impression, already present through the grand colonnade, of a hypostyle temple that has been warped by some mighty hand into a basilican hall.

The Spirito Santo is a strong and resourceful revision of the rococo in terms of a solemn, doctrinal Vitruvianism that sets the church beside its exact contemporary, Chalgrin’s similar St. Philippe-du-Roule, Paris, as a shrine of Neoclassicism.

Carlini, however, claims that Gioffredo’s greatest work is not this church but his treatise on architecture of 1768. This appeared in the same year as Bernardo Galiani’s translation of Vitruvius. Together the two books constitute the first Neapolitan treatises on architecture, and both, along with Vanvitelli’s Dichiarazione of twelve years earlier, go to make up a new, Vitruvian antirococo theoretical wave culminating with Carlini’s own treatise of 1772. Only the first of the three planned parts
of Gioffredo's book was published, a theoretical introduction. The second and third parts were to be, respectively, on civil and religious buildings.

Gioffredo’s treatise really belongs with the literature of Neoclassicism. It is a plea to return to antique simplicity. Mathematics is its basis as mathematics is the basis of all things. Architecture must be rectilinear, “without recourse to capricious strange ornament . . . twisted columns, barbarically transmogrified capitals, animal pelts, cartouches, fronds, wickerwork frames. . . .”44 The architectural orders, and the orders alone, are to dominate. A vignette at the head of the first chapter of the treatise says it all: the temples at Paestum, the Temple of Diana at Baiae, the Temple of the Dioscuri in downtown Naples, are reconstructed and brought together in one place.

Gioffredo had read Mazzocchi as well as Vitruvius. And like the Vichians, whose work he may well have known, he supposes that Etruscan cultural primacy is expressed in an austere architecture from Egypt, an idea Winckelmann also discusses. Architecture ought to be austere, in turn, because its primordial function was to defend newly civilized man from the invasions of wild beasts and to fight off the horrors of the night. By this we are to understand the night of barbarism. Ancient Near Eastern civilizations, as at Persepolis and among the Assyrians, Medes, and Persians, produced buildings that equaled the vast empires that bore those names, buildings that seem to vie with time itself in duration and sublimity. Equally sublime are the altars early man erected on mountaintops, for example those of the Hebrews, the Scythians, and the Persians.45

One element was missing from all this: the orders. Gioffredo not only gives formulas for Etruscan, Doric, Ionic, and others but provides an interesting theoretical basis to explain their differences. Architectural order is “the union of several things that by commutative proportions create the formation of a whole.” Hence the very basis of the orders, like that of architecture itself, is mathematical. It is based not only on proportion but on dimension and the distribution of finite values assigned by commutation (partly interchanging number series). One is reminded here not only of Carletti’s later book but of Vico’s architectonic justice with its own orders: arithmetic, geometric, commutative, and distributive.

Gioffredo continues that it was the Etruscans who first ordered and harmonized the vastnesses of sublime early architecture by means of the orders. Their columns, bases, friezes, cornices, and capitals imposed principles of combination and classification on the inert grandeur of the earlier architectural patrimony. As a result of this native Italic gift for order the greatest of all architecture became the Roman: Near Eastern power was subdued, and subsumed, by Italic intelligence.46

But the apex soon passed. With the decline of the Roman Empire, painters, for example, ceased to portray the grand real monuments of their architect confrères and instead began to fantasticate a spindly, playful, structurally impossible style. Herculaneum teaches that this decadent Roman art, with its reedy columns and walls like embroidered banners, is the real beginning of Gothic. This postimperial manner is taken up
by the Goths themselves, who were then occupying Italy. By them it was spread over Europe. An architecture resulted that was truly Gothic: barbarous, extravagant, immoral, counter to all primitive classic greatness. And this architecture survived all attempts at reformation until the old architecture of power, correctness, and magnificence was restored by Carlo di Borbone in Naples in the eighteenth century.47

Carlini concludes his vita in the approved manner, with a meditation on Gioffredo’s character:

Good fortune, when you wait for it, can be utter splendor. But when you try to force it it can be utter evil. The latter kind of fortune manifests its own falsity. Gioffredo was very skilled in his art and quickly mastered all subsidiary disciplines, easily becoming the best of architects. No one was his superior and his work flowered with honesty and truth. But a hard character and abrasive manners and speech showed themselves more and more freely in him; there was a lack of consideration for fellow-architects that embittered them against him despite all forbearance. Rigid in his ideas, Gioffredo built no building that did not breed dissension. His works shone with their own splendor, but nonetheless he would insist on hounding his client into declaring their perfections over and over again. All this gave opportunities to his detractors and did him great damage, though he continued to condemn his critics and praise his own work to the skies. The family finances suffered and his daughters had miserable dowries. However Gioffredo can be said to have provided them with dowries of virtue and education. He was a diligent, by no means indulgent paterfamilias.48

In the last act of his life’s drama Gioffredo’s fortunes were restored. About a year before his death in 1781 the Royal Architect, Ferdinando Fuga, resigned his post, worth 600 gold ducats a year, and it went to Gioffredo. “But Gioffredo’s heavy labors and his heavier attitude to life brought on illness. He began to overwork his eyes, losing the sight first of one then of both. Melancholia then plunged him into desperation. The ever stronger medicines he used to restore his sight unbalanced his mind and broke his spirit. He died on March 7 in the year of salvation 1785.”49

Luigi Vanvitelli

As a courtier Vanvitelli was more adroit than Gioffredo, though his tongue was quite as spiteful and his life almost as unhappy.50 Indeed his relationship with Gioffredo and the king formed an interesting three-way symmetry. On one side Vanvitelli was the persecutor who succeeded Gioffredo in Carlo’s favor and went on to design Caserta. Yet Vanvitelli imitated Gioffredo’s style, borrowed ideas from him, and was then in turn imitated by Gioffredo. Both, meanwhile, were ultimately abandoned by the king who nevertheless remained the idol of each and who was considered by both architects to be the restorer of good architecture in southern Italy.

Unlike Gioffredo, however, Vanvitelli, as we have seen, had close personal relationships with the king and queen. He attended the baciamento frequently, conversed with his sovereigns in a familiar manner, and was often invited by them to dinner
with distinguished guests. The king and queen went over Vanvitelli’s plans at every stage with the utmost minuteness, visited the sites where he was working and in short made a considerable pastime out of the progress of the great palace. In return Vanvitelli treated Carlo as an exalted fellow architect.

It may well be that when Carlo appeared suddenly to accept Vanvitelli’s design and reject Gioffredo’s it was because Gioffredo was so unpleasant. In any case Carlo had been seeking out other architects well before Vanvitelli presented his project. At least two of these architects, Niccolo Salvi and Alessandro Galilei, were leading figures in Rome like Vanvitelli himself. But only Vanvitelli was willing or able to set about designing the palace, as he did, in his Roman studio before moving to Naples.

Vanvitelli, though born in Naples and though his father, the landscape painter Gaspar van Wittel, was Dutch, remained all his life a Roman of Romans. In this he unconsciously, or perhaps consciously, aided Vico’s campaign to exalt Roman religion, law, and myth. On the other hand Vanvitelli’s puddingish countenance, his massive paunch, his scientific carefulness, his stolidity, and his love of brick and of canals are perhaps traceable to his Dutch blood (fig. 4.15).

Vanvitelli was born on May 12, 1700. Within a year the family was in Rome, driven from Naples by an insurrection and an epidemic. Vanvitelli’s grandson, in his excellent biography of the architect, suggests that Luigi was educated more as a humanist than as a practical builder—another point in common
with Gioffredo. Besides architecture he studied literature, philosophy, geometry, and physics, and his Latin was good enough for him to pronounce on Metastasio’s. He measured Roman monuments. And he read deeply, we are told, in architectural theory. There is much in the grandson’s biography on what Vanvitelli learned from the dead but little on what he learned from living teachers. The most prominently mentioned of these is Filippo Juvarra. Vanvitelli does seem to have worked with that architect, though the two were never in Rome at the same time for very long periods. Certainly Vanvitelli was influenced by Juvarra’s work and on one later occasion denied that Caserta was influenced by Juvarra’s masterpiece in the palace idiom, Stupinigi, near Turin. (But compare figs. 4.16 and 6.14.) Juvarra’s project for remodeling the Palazzo Reale at Messina, 1714, with its long axial garden and geometric palace building; the complete project for the Palazzo Madama in Turin, 1721, with its squat triumphal corner towers and three-arched basement entrance underneath a colossal order; similar features planned for Rivoli, 1724; the octagon plans for the Duomo in Turin, and above all sketches for a great octagon stair and circulation center in the Palazzo Reale, Madrid, 1735, also attest to a similarity of ideas in the older and the younger man. But Vanvitelli, for all his taste for literature, emerged as a fine practical builder and civil engineer in a Roman tradition closer to men like Domenico Fontana, architect of the Palazzo Reale in Naples, than to Juvarra. The tradition of civil engineering, of emphasis on mass and vastness followed by Domenico and his descendant Carlo
Fontana (who was Juvarra’s master) came out strongly in Vanvitelli and meshed with the military mode of the Neapolitan antirococo architects Medrano and Gioffredo.57

Medrano, Vanvitelli, Gioffredo, and Fuga, in fact, introduced into Naples a new current of Baroque classicism that eschewed the taking of “licentia pro libertate” as Carlini put it, and embraced what he called an architecture “ab aequalibus,” of coherence.58 It was the architecture of Gioffredo’s Spirito Santo, an architecture of intricate rectilinear symmetries, powerfully commanded by orders preferably taking the form of colossal monoliths.59

Ferdinando Fuga, Vanvitelli’s other archenemy aside from Gioffredo, thought along similar proto-Neoclassical lines. The plan for the Cimitero di Santo Spirito, with its 10 by 10 scheme of pierlike tombs, recalls Caramuel’s reconstruction of the Temple of Diana at Ephesus (fig. 3.10). In Naples Fuga produced, at about the time Gioffredo was working on his Caserta plans, a scheme for the Albergo dei Poveri that is strikingly similar in its geometry (but with four courts instead of nine) to what Gioffredo was doing (figs. 4.4, 6.1).60 These things provide all the more reason to sense the mind of Carlo di Borbone behind Caserta. One should also note that these new buildings were far vaster in scale than anything earlier in Naples; their great open courts and forecourts were very different from the small, hidden, exfoliate architecture of the true Neapolitan Baroque.

Vanvitelli’s first big chance in architecture had come when he entered the competition for a new facade for St. John Lateran (1732). Though he failed to win, his excellent showing against Alessandro Galilei, whose design was chosen and built (fig. 4.17), and against Salvi (who got the Trevi Fountain job as a consolation prize), made Vanvitelli’s name.61 Galilei’s colossal Michelangelesque Composite order clasping a two-story inner elevation, its mixture of pilasters and engaged columns, his temple front, parapet, symblemata, or gesticulating roofline statues, all reappear at Caserta (fig. 6.19). The same is true of the Trevi (fig. 4.18), except that in this case the Corinthian triumphal arch with its huge niche suggests Caserta’s window of appearances.

Vanvitelli’s own consolation prize was the commission to build a lazaretto in the harbor at Ancona. This might seem a consolation prize that in itself required consolation, especially in view of the years of agony that Vanvitelli went through trying to collect his fee. But in fact he built a fine, impressive polygon like one of the more elaborate forts or bastions of the period. At Ancona he also erected the Gesù, the Arco Clementino, and the Chapel of San Siriac.62 Other work followed, in the Marches, at Perugia, at Macerata, and at Pesaro, as well as the campanile at Loreto already mentioned. Yet Vanvitelli’s fame and his accompanying notoriety remained anchored to Rome. There despite his critics he constructed a strong reputation. His main detractor was one of the pope’s private chaplains, a Florentine named Giovanni Bottari. The war grew worse
4-17
Alessandro Galilei.
Church of San Giovanni in Laterano, facade, 1735. Photo Alinari
4.18
Nicola Salvi. Trevi Fountain, Rome, 1732–1751; 1762.
Photo Alinari
over Vanvitelli’s plans to stabilize Michelangelo’s dome, which had developed cracks. Vanvitelli’s scheme was adopted and the dome’s predicted failure did not come about or at least not at once. In the Vanvitelli archive at Caserta are many drawings of the drum’s cracked buttresses, and the Lettre allude to continued problems with the dome well into the 1760s. Vanvitelli mentions building a new set of buttresses for the drum: Could he have had in mind something like those he provided for the planned dome at Caserta (fig. 6.17)? If so it is a good thing he did not get to build them; they would have given the famous silhouette a strange character. Anyway, for the immediate present, in 1749–50, Vanvitelli emerged from his critical passage at arms with a strengthened reputation. Other Roman work consisted of wings for the Palazzo Odescalchi (with Salvi), a project for a chapel for the king of Portugal, and the curious, controversial enlargement of Santa Maria degli Angeli, the church Michelangelo had erected out of the ruins of the Baths of Diocletian. More serene in effect and more like Caserta in style is the Convent of Sant’ Agostino. Yet even this large, plain, pleasant building, accented with Borrominesque openings but otherwise uneventful, was surrounded by the familiar barrage of public letters, pamphlets, and clerical betrayals. No wonder the Lettre show signs of paranoia.

Judging from the books he constantly ordered from Rome, Vanvitelli was well read in mathematics and poetry as well as possessing a fine architectural library. Like the Vichians and like Gioffredo, he believed in the primacy of Italo-Etruscan architecture over Greek and that Greek greatness came with the Greek settlements in Italy. As to France, he owned prints of Versailles, the Louvre, and the Tuileries, to be sure, but only for purposes of pejorative contrast. He acted as Galiani’s adviser on the Vitruvius translation, helping to make it a proclamation of his principles.

Vanvitelli’s temper and psychic equilibrium were severely tested by Carlo’s departure for Spain in 1759. The Regency Council’s lack of enthusiasm for his work and for Caserta in general led him into a despondency that was less oppressive but longer lasting than Gioffredo’s. Unlike Carlo di Borbone, Vanvitelli had to stretch his sinews not against the melancholia of youth but against that more inescapable sort, that of age. In the years between 1759 and 1768, indeed, Ferdinando IV visited the great new palace only once. “The building has a fine effect,” lamented Vanvitelli, “but to what purpose? If the Catholic King [Carlo] were here it would be much. Now it is nothing.”

Yet despite these complaints and the new ascendancy of Fuga, Vanvitelli built much in Naples after 1759. There are the Foro Carolino of 1757–1765 (fig. 4.5); the cavalry barracks at Ponte Della Maddaloni (1764), the Strada della Marinella and Borgo Loreto on the banks of the Sebeto; the improvements around the port; the facade and stairs of the Palazzo Calabritto and Vanvitelli’s ecclesiastical masterpiece, the inspiration for Gioffredo’s Spirito Santo, the Annunziata of 1760–1782 (figs. 4.19, 4.20), with its majestic single vessel of a nave supported on forty-four colossal marble Corinthian columns, an apsidal hypostyle like Gioffredo’s, with an elegant dome. Comparing
4.19
Vanvitelli. Church of
the Annunziata,
Naples, 1760–1782.
Nave vault. Photo
Mimmo Jodice
Vanvitelli’s work with Gioffredo’s (figs. 4.20 and 4.14) one notes the greater geometric power of Vanvitelli’s dome, with its strong scalloping of niches in the drum, and the powerful fretwork of octagons and hexagons in the vault and dome coffering. Though he was clearly under Vanvitelli’s influence, Gioffredo was to be more cautious and retardataire as an ornamentist. He supplants Vanvitelli’s firm thick grid with borders and looping sculptural accents.

The intertwining of the mutual influences in the careers of the two men is seen again at Vanvitelli’s Villa Campolieto at Resina, on which Gioffredo also worked. The festival designs for the Palazzo Teora, on the other hand, were entirely Vanvitelli’s. They were executed for Count Ernst von Kaunitz, the Austrian ambassador, when in 1768 he celebrated the marriage between Ferdinando IV and Maria Carolina of Austria. Also his was the Palazzo Fendi remodeling, that of the Palazzo Casacalenda (after Gioffredo had been dismissed from the job in 1766, leaving on the building a facade very similar to what he had designed for Caserta); the Oratorio della Scala Santa in the cloister of SS Marcellino e Festo (1772), as well as the facade of that church; the Palazzo Bovio remodeling of 1772; the facade of the Palazzo d’Angri, 1755, and SS Trinità, begun 1769. All these buildings brought to Naples the clear, geometric, column-oriented architecture Vanvitelli was giving Caserta. They were “lessons in proper modern architecture,” as he put it, lessons that almost from his arrival in the city Vanvitelli had been anxious to teach. So despite his complaints much of the building activity that
filled the Kingdom of the Two Sicilies as a result of Carlo's and Ferdinando's patronage was tied directly to Vanvitelli and his assistants. Here at last in fact was the great resident architect that the Renaissance kings of Naples had so sorely lacked.

In his sanguine moments Vanvitelli was fully aware of this. He knew he was a success and a great architect but seemed to want to believe himself a failure and a victim and therefore wrote and suffered as one. Perhaps this was in part because of the very nature of that Sublime he so relentlessly sought. He often emphasized the Near Eastern magnificence of Carlo's dreams and the fact that their fulfillment was only partial. He writes in his treatise on the Caserta aqueduct:

But to speak of the advantages that architecture enjoys from princes especially, I note that without these great spirits who ruled in Babylon, Memphis, Palmyra, Rome, and elsewhere, the stupendous piles would not have risen which whole centuries have worked in vain to destroy, and which so firmly teach to a posterity inundated with barbarism, the just proportions and varied forms of solid and ornamental building.\[^{74}\]

This tells us, in words presaging Gioffredo and Carletti, what the creators of the absolute palace felt to be its ancestry. Babylon, Memphis, Palmyra, and Rome were the seats of the prototypical rulers of the Vichian family state. The words were written by Vanvitelli but could have been written by the philosopher himself, or even by Carlo di Borbone.

And yet as the years go by and Caserta slowly rises, as the gardens are planted and filled with their alleys and sculptured fountains, Vanvitelli himself seems ever more estranged from his creation, ever more prey to melancholy. Complaints multiply about slights, the promotion of nonentities, forgotten or broken promises, cabals. The young Ferdinando, with his pale, perfectly oval face and large red mouth, though he appears charming in Mengs's portrait (fig. 4.21), grew up into a rather loulish lazzerone, was quite uninterested in architecture and in Caserta, and ignored Vanvitelli.\[^{75}\] The deepest disappointment of all, arching Vanvitelli's later years like a great black catafalque, was the summons to Spain that never came. The tone of the architect's last decades—the processes of gaining favor, the attempts to get paid, the state of architectural professionalism in an absolutist court—is summed up in a letter to Marco Pini, a friend at Carlo's court in Madrid:

Naples, 21 July 1767

Most Illustrious and Beloved Worshipful Lord:

I receive your most welcome letter of June 30 from Madrid, which confirms my situation. Since His Catholic Majesty, God keep him, sees fit not even to ask out of curiosity: "why does one not hear that Vanvitelli, who had served me well, has been given some work?" [your letter] takes from me any hope of aid. This is the unfortunate condition to which I am reduced, dear friend, for having, with a zeal that was true and unfeigned—unlike the zeal of many men—served the commands and oracles of the greatest king on earth. In Naples my every merit has become demerit. God has permitted it. . . .
Everything has vanished like mist in the sun. I have been left to the mercy of those who wanted me discharged from the service years ago—as I have several times indicated in my letters. I go to the ocean and find it dry. Meritorious service has earned me disgrace. Except for a miracle I am without resource. I do not know how long my courage can cope with this sort of outrage without damage to my health.

If a proper moment should arise, I pray you, place me at the Sovereign’s royal feet while I, remaining full of infinite obligation, kiss your hand, being your illustrious lordship’s most devoted

Luigi Vanvitelli

Although undoubtedly Vanvitelli did need money and undoubtedly was owed money, things were not as desperate as this letter makes out: he had a lot of work. The whining and the fawning are part of the courtier-architect’s professional technique. They are extensions of the principles of the baciamano. They underline the dependency that is the principle of absolutism. They are, as Vico might say, made necessary by the monarch’s need for utter freedom. If Carlo di Borbone breaks his promise he is right to do so; and Vanvitelli cannot bring himself actually to point the finger of blame even in private letters. This, after all, is how gods are.