Lecture Outline: Respiratory System
Hole’s HAP [Chapter 19]

I. Introduction
Respiration is the process of exchanging gases between the atmosphere and body cells.

Respiration consists of:
Ventilation –

External Respiration –

Transport –

Internal Respiration –

Cellular Respiration –

II. Organization
1. Conducting division

2. Respiratory division

III. Functions
1. Gas exchange

2. Conducting passageway

3. Protection of respiratory surfaces

4. Sound production

5. Sense of olfaction
IV. Components

1. Upper respiratory system
 - nose, nasal cavity, paranasal sinuses, pharynx

2. Lower respiratory system
 - larynx, trachea, primary bronchi, lungs

A. Nose and nasal cavity
 Nose –

 External nares –

 Vestibule – space within flexible area, coarse hairs

 Nasal septum – perpendicular plate of ethmoid and vomer

 Nasal conchae – superior, middle, inferior

 meatuses –

 Hard palate –

 Soft palate –

 Olfactory region – extends from superior nasal conchae

 Internal nares – nasal cavity opens into nasopharynx

B. Sinuses

C. Pharynx
 1. Nasopharynx –

 2. Oropharynx –

 3. Laryngopharynx –
D. Larynx –
 Cartilages
 1. Thyroid – shield, hyaline cartilage
 2. Cricoid – hyaline cartilage
 3. Epiglottis –

 4. Three pairs of smaller cartilages:
 - arytenoid
 - cuneiform

 Vocal cords
 Vestibular folds
 - false vocal cords

 Vocal folds
 - true vocal cords

E. Trachea
 Length is about 11 cm, open tube

 Histology
 Mucosa –
 Submucosa –
 Cartilages –

 Heimlich maneuver – abdominal thrusts
 Tracheostomy –
F. Bronchi
 Trachea bifurcates into 2 primary bronchi

 Primary bronchi
 Right primary bronchus – larger in diameter, more vertical
 Left primary bronchus

 Branching
 Primary bronchi → (intrapulmonary bronchi) secondary bronchi
 → _____________________ → bronchioles →

G. Alveoli
 Approximately 300 million total

 Sacs composed of 2 cell types:
 - Simple squamous epithelium (__________)
 - Septal cells (__________) →

 Macrophages

 Capillaries surrounding alveoli:
 RV → pulmonary arteries → capillaries
 → _____________ → LA

H. Lungs –
 1. Location:

 2. Characteristics:
 Apex – superior end
 Base – concave inferior end, rests on diaphragm
 Hilus –
 Cardiac notch – indentation on left lung
3. Lobes – supplied by lobar bronchi

 Right lung –

 Left lung –

4. Pleural membranes (serous)

 Parietal pleura

 Visceral pleura

 Pleurisy –

 Pneumothorax –

 Hemothorax –

V. Respiratory Mucosa

 1. Respiratory epithelium

 PSCCE with Goblet cells –

 Stratified Squamous –

 PSCCE –

 Cuboidal cells with cilia –

 2. Lamina propria –

 3. Respiratory defense system

 - mucus escalator – cilia beat upward

 - filtration – traps particles in mucus

 - alveolar macrophages –
VI. Breathing Mechanism

Breathing is the movement of air from outside the body into the bronchial tree and alveoli

- air movements of inspiration and expiration
- changes in the size of the thoracic cavity due to ________________

Lungs at rest have an internal pressure equal to the outside pressure of the thorax

1. Inspiration
 - intra-alveolar pressure decreases to about ________________ as the thoracic cavity enlarges
 - atmospheric pressure forces air in the airways
 - shape of thorax changes by contraction of sternocleidomastoid and pectoralis minor muscles

2. Expiration
 - due to elastic recoil of the lung tissues and abdominal organs
 - maximal expiration is due to contraction of abdominal muscles and intercostal muscles

3. Boyle’s law
 Inverse relationship between __________ and __________

Pressure and airflow – air flows from high to low pressure

Diaphragm flattens as it contracts
 During inhalation:
 → increase volume of thoracic cavity
 →
Pressure changes
Atmospheric pressure (1 atm) = 760 mmHg

Inhalation Exhalation

Intra-alveolar pressure

Intra pleural pressure

4. Respiratory Cycle
 = inhalation + exhalation

 Tidal Volume – amount of air inhaled or exhaled

 __________ ml at rest

 Eupnea –

5. Respiratory muscles
 Inspiration – diaphragm, external intercostals

 Expiration – passive process

 Hyperpnea –

 Inspiration – scalenes + same as above

 Expiration – internal intercostals and abdominal muscles

6. Respiratory rate
 Adults

 Children
7. Respiratory Volumes
 A. Resting tidal volume =
 B. Expiratory reserve volume =
 C. Residual volume =
 D. Inspiratory reserve volume
 E. Vital capacity

8. Alveolar ventilation
 Minute ventilation – tidal volume multiplied by breathing rate
 -
 Alveolar ventilation rate – major factor affecting concentrations of oxygen and carbon dioxide in the alveoli
 -
 - tidal volume minus physiologic dead space then multiplied by breathing rate

9. Nonrespiratory air movements
 Coughing
 Sneezing
 Laughing
 Crying
 Hiccuping
 Yawning
 Speech
VII. Control of Respiration

1. Respiratory centers in medulla oblongata
 - respiratory rhythmicity center = controls basic rhythm of respiration

2. Pontine respiratory group – formally called ______________ and ______________ centers in Pons
 Apneustic center – lower pons
 - increases inspiration =
 Pneumotaxic center – superior pons
 - coordinates transition between inspiration and expiration

3. Respiratory reflexes –
 A. Chemoreceptors – sensitive to _______, _______, and ________ in blood
 - stimulate respiratory centers →
 Central chemoreceptors – located in medulla oblongata
 - sensitive to ______ and ________ changes in CSF
 Peripheral chemoreceptors in carotid and aortic bodies
 B. Baroreceptors
 - carotid and aortic sinus detect stretching in vessel walls and blood pressure is adjusted
 Hering-Breuer reflex
 - stretch receptors in lungs prevent over-inflation
 - inhibitory impulses to respiratory center in medulla oblongata →
Factors affecting breathing

- decreased blood oxygen concentration stimulates peripheral chemoreceptors in the carotid and aortic bodies
- motor impulses travel from the respiratory center to the diaphragm and external intercostal muscles
- inhibitory impulses from receptors to respiratory center prevent over-inflation of lungs

VIII. Alveoli

- gas exchanges between the air and blood occur within the alveoli

Alveolar pores =

1. Respiratory membrane
 2 cell layer thickness

 Simple squamous epithelium –

 Endothelium –

 RDS – Respiratory Distress syndrome = not enough surfactant produced

2. Diffusion through respiratory membrane
 - gases are exchanged because of differences in ________________

A. Dalton’s law and partial pressure
 - pressure exerted by a particular gas in a mixture of gases is directly related to the concentration of that gas in the mixture and to the total pressure of the mixture
Atmospheric pressure –

760 mmHg =

Partial pressure of individual gas = % of that gas in atmosphere times total pressure of system

Ex. pO_2

B. External respiration
- pCO_2 is greater in capillary surrounding alveoli than in alveoli
- CO_2 diffuses from blood \rightarrow
- O_2 diffuses from alveoli \rightarrow

C. Internal Respiration
- pCO_2 is greater in tissues & tissue fluid than in capillaries $\rightarrow CO_2$ diffuses to blood
- O_2 diffuses into tissues

3. Oxygen Transport
- Most oxygen binds to hemoglobin to form oxyhemoglobin
- Oxyhemoglobin releases oxygen in the regions of body cells
- Much oxygen is still bound to hemoglobin in the venous blood

A. Oxygen
Hemoglobin (Hb) bound = 98.5%

Oxygen dissolved in plasma = 1.5%
B. Oxygen Release
Amount of oxygen released from oxyhemoglobin increases as:
- partial pressure of carbon dioxide increases
- the blood pH decreases
- blood temperature increases

Each Hb can carry 4 molecules of O2

If all Hb carry 4 molecules, then ______ saturated.

If Hb average 2 molecules, then ______ saturated.

Factors that affect oxygen dissociation curve:
1) pO_2

2) pH - ____acid environment (____pH)
 \Rightarrow O2 dissociates more readily from Hb

3) Temperature - ____temperature \Rightarrow ____ O2 released from Hb

4) fetal Hb - binds more O2 than adult Hb

4. Carbon Dioxide Transport
- dissolved in plasma
- combined with hemoglobin
- in the form of bicarbonate ions

A. Dissolved in plasma: ______

B. Combines with globin part of Hb: ______
 - called carbaminothegoglobin

 \[\text{CO}_2 + \text{Hb} \leftrightarrow \text{Hb} \text{ CO}_2 \]

C. Most transported as bicarbonate ions: ______

 \[\text{CO}_2 + \text{H}_2\text{O} \leftrightarrow \text{H}_2\text{CO}_3 \leftrightarrow \text{H}^+ + \text{HCO}_3^- \]
5. Chloride Shift
 - bicarbonate ions diffuse out of RBCs

 When blood reaches lungs, all reactions are reversed:
 - Cl\(^-\) moves out of RBC;
 - HCO\(_3^-\) moves into RBC;
 - H\(_2\)CO\(_3\) forms \(\leftrightarrow\) CO\(_2\) + H\(_2\)O
 - CO\(_2\) diffuses into alveoli

Life-Span Changes
Clinical Applications