BIO 103 Introduction

Lecture Outline
Introduction/Organic Molecules/Cells/Cell Division

Hole’s *Human Anatomy & Physiology*
[Chapters 1, 2 (p. 61-69), 3, 4, 22 (p. 835-837, 849-852)]

Introduction [Chapter 1]

A. **Anatomy**
 -

B. **Physiology**
 -

 Structure is always related to ____________.

C. **A&P go together**
 -
 -

 Ex. Heart

 LV →

 RV →

Levels of Organization (Simplest ---> Complex)

Subatomic particles -
Atom -

Molecule -
Macromolecule -

Organelle

Cell -
Tissue -

Organ -
Organ System -

Organism -
Characteristics of Life
Movement –
Responsiveness –
Growth –
Reproduction –
Respiration –
Digestion –
Absorption –
Circulation –
Assimilation –
Excretion –

Requirements of Organisms
Water
- required for ___________ & ______________
- regulates ______________

Food
- provides ______________
- supplies ______________

Oxygen (Gas)
- used to release energy from nutrients

Heat
- form of energy
-

Pressure
- applying force on an object
- atmospheric pressure - ______________
- hydrostatic pressure - ______________
Homeostasis

A. Def.

B. Homeostatic Mechanisms
 1. Receptors –
 2. Control Center –
 3. Effectors -

 Body temperature:

 Too high Too low

C. Negative Feedback
 -
 -
 Ex.

D. Positive Feedback
 -
 Ex.

Membranes & Cavities

A. Cranial Cavity –

B. Vertebral Canal (Spinal Cavity) –
C. Thoracic Cavity
 o Pleural Cavities – lungs
 o Mediastinum –
 o Pericardial Cavity – heart

D. Abdominalpelvic Cavity
 o Abdominal Cavity –
 o Pelvic Cavity –

Visceral layer –

Parietal layer –

E. Thoracic Membranes
 o
 o visceral
 o parietal

 o
 o visceral
 o parietal

F. Abdominopelvic Membranes
 o
 o visceral
 o parietal

Thoracic cavity

a) Pleural membranes
 - parietal pleura
 <pleural cavity>
 - visceral pleura

b) Pericardium
 i. Fibrous pericardium
 ii. Serous pericardium
 - parietal
 <pericardial cavity>
 - visceral
Abdominopelvic cavity

Peritoneum
- visceral peritoneum
 <peritoneal cavity>
- parietal peritoneum

Definitions:

Serous Fluid:

Retroperitoneal:

Mesentery:

11 Major Organ Systems

Body Covering:
- __________________

Support & Movement:
- __________________
- __________________

Integration and Coordination:
- __________________
- __________________

Transport:
- __________________
- __________________

Absorption & Excretion
- __________________
- __________________
- __________________

Reproduction:
- __________________
Organ Systems

1. Integumentary System
 Organs:
 Functions:

2. Skeletal System
 Organs:
 Functions:

3. Muscular System
 Organs
 Functions:

4. Nervous System
 Organs:
 Functions:

5. Endocrine System
 Organs:
 Functions:

6. Cardiovascular System
 Organs:
 Functions:

7. Lymphatic System
 Organs:
 Functions:

8. Digestive System
 Organs:
 Functions:

9. Respiratory Systems
 Organs:
 Functions:

10. Urinary System
 Organs:
 Functions:

11. Reproductive Systems
 Organs:
 Functions:
Anatomical Terminology

A. Anatomical Position

B. Terms of Relative Position
 - Superior
 - Inferior
 - Anterior
 - Posterior
 - Dorsal
 - Ventral
 - Cranial (Cephalad)
 - Caudal
 - Medial
 - Lateral
 - Proximal
 - Distal
 - Superficial
 - Deep

C. Body Sections/Planes
 - Sagittal / Midsagittal / Parasagittal
 - Transverse or Cross-section
 - Coronal or Frontal
 - Oblique
 - Longitudinal / Horizontal
D. Abdominal Subdivision

Nine (9) Abdominopelvic Regions:

<table>
<thead>
<tr>
<th></th>
<th>Right Hypochondriac</th>
<th>Epigastic</th>
<th>Left Hypochondriac</th>
</tr>
</thead>
<tbody>
<tr>
<td>Right Lumbar</td>
<td></td>
<td>Umbilical</td>
<td></td>
</tr>
<tr>
<td>Left Inguinal (Iliac)</td>
<td></td>
<td>Hypogastric (Pubic)</td>
<td>Left Inguinal (Iliac)</td>
</tr>
</tbody>
</table>

Four (4) Abdominopelvic Quadrants:

<table>
<thead>
<tr>
<th></th>
<th>RUQ</th>
<th>LUQ</th>
<th>RLQ</th>
<th>LLQ</th>
</tr>
</thead>
</table>

E. Body Regions

- Antebrachial –
- Axillary –
- Brachial –
- Cervical –
- Costal –
- Crural –
- Femoral –
- Gluteal –
- Mammary –
- Nasal –
- Occipital –
- Pectoral –
- Sternal –
- Tarsal –
- Vertebral –
Chemical Basis of Life [Chapter 2]

A. Why study chemistry in Anatomy & Physiology class?

- biochemistry helps to explain physiology

B. Organic versus Inorganic

1. Organic Molecules
 - contain _______ and _______
 - water soluble
 - ______________, ____________, _____________, and ______________

2. Inorganic Molecules
 - do not contain C (usually)
 - dissociate in water to form __________
 - __________, __________, __________, inorganic salts

C. Inorganic Substances

1. Water
 - ~ two-thirds of body wt.
 - medium for ______________
 - transports ______________
 - absorbs and transports ______________

2. Oxygen
 - used by organelles to ______________
 - necessary for survival

3. Carbon dioxide
 - ______________
4. Inorganic salts
 • source of ions (_____, ______, ______, ______)
 • important role in metabolism

D. Organic Substances
 Four (4) major classes of organic compounds:

1. **Carbohydrates**
 - provide ___________ to cells
 - supply materials to ______________
 - ratio of H to O close to 2:1 (C₆H₁₂O₆)

 Examples:
 - ______________ – glucose, fructose
 - ______________ – sucrose, lactose
 - ______________ – glycogen, cellulose

2. **Lipids**
 - Insoluble in water

 Examples:
 -
 -
 -

 fats (triglycerides)
 - used primarily for energy; most common lipid in body
 - contain C, H, and O but less O than carbohydrates (C₅₇H₁₁₀O₆)
 - building blocks = 1__________ + 3 ____________
 - saturated and unsaturated

 phospholipids
 - building blocks = 1 _______ 2 _______, and 1 phosphate per molecule
 - hydrophilic and hydrophobic
 - major component of cell membranes
steroids
• four carbon rings
• component of ______________________
• cholesterol
• used to synthesize _______________

3. Proteins
• structural material
• energy source
• hormones
• receptors
• enzymes
• antibodies

• Building blocks are __________ _________

4. Nucleic Acids
• carry genes
• encode amino acid sequences of proteins

• building blocks = ______________

• DNA (__________________) – double polynucleotide

• RNA (__________________) – single polynucleotide

E. ATP Molecules
(Adenosine triphosphate)
• each ATP molecule has three parts:
 • an adenine molecule
 • a ribose molecule
 • three phosphate molecules in a chain

• third phosphate attached by high-energy bond

• ATP <===> ADP + P + E

Cells & Cellular Metabolism [Chapters 3 & 4]

A. Introduction to Cells
• vary in __________ and _________
• measured in ________________ (μm)
• somatic –
• sex – (sperm, oocytes)
B. Composite Cell
 Major parts
 •
 •
 •

C. Cell Membrane
 • barrier
 • selectively permeable
 - ______________
 • phospholipid bilayer
 - ______________ “heads” form surfaces
 - ______________ “tails” form interior
 - permeable to ______________
 • cholesterol - stabilizes the membrane
 • proteins
 o receptors – bind hormones
 o pores, channels, carriers [integral proteins]
 - ______________
 o enzymes ______________
 o CAMS (cellular adhesion molecules)
 - ______________
 o self-markers – ______________

D. Cytoplasmic Organelles

1. Endoplasmic Reticulum
 • membrane-bound sacs & vesicles
 • Ex.
 • rough ER (RER)
 - ______________
 - ______________
 • smooth ER (SER)
 -
 -
 -
2. Ribosomes
 -

3. Golgi apparatus
 -

4. Vesicles
 -

5. Mitochondria
 -

6. Lysosomes
 -

7. Peroxisomes
 -

8. Centrosomes
 -

9. Microvilli
 -

10. Cilia
 -

11. Flagellum
 -

12. Microfilaments and microtubules
 -

13. Inclusions - storage of ___________, ____________
E. Cell Nucleus
 - control center of cell
 - nuclear envelope
 - nucleolus
 - chromatin
 - fibers of DNA and proteins
 - stores information for protein synthesis

F. Nucleic Acids and Protein Synthesis
 Genetic information –
 Gene -
 Genome –
 Genetic Code –

G. Structure of DNA
 - two polynucleotide chains
 - N-bases pair specifically
 - (_______ and _______)
 - forms a _______________
 - chromosomes = _______________

H. RNA Molecules
 1. Messenger RNA (mRNA) -
 - delivers genetic information from nucleus to the cytoplasm
 - __________
 - DNA is template
 - RNA nucleotides are complementary to DNA nucleotides
 [exception:
 - no ___________ in RNA; replaced with ________]
 - making of mRNA (from DNA) is ______________
DNA & RNA Practice Exercise:

| **DNA** | **DNA** | **mRNA** |

2. Transfer RNA (tRNA) -
 - carries ________________ to mRNA
 - carries ________________ to mRNA
 - translates a codon of mRNA into an amino acid

3. Ribosomal RNA (rRNA) –
 - provides structure and enzyme activity for ribosomes

I. Protein Synthesis
 1. Transcription of mRNA
 - DNA serves as template for ________________

2. Translation
 - mRNA converted into sequence of ________ → ________

J. Mutations
 Mutations –
 Result when –
 May or may not change the protein.

K. Clinical Application
 Phenylketonuria
 - enzyme that breaks down the a.a. phenylalanine (phe) is missing
 - build up of phe causes mental retardation
 - treated by diets very low in phenylalanine
L. Movements Into and Out of the Cell

<table>
<thead>
<tr>
<th>Passive (Physical) Processes</th>
<th>Active (Physiological) Processes</th>
</tr>
</thead>
<tbody>
<tr>
<td>• require no energy</td>
<td>* require energy (ATP)</td>
</tr>
<tr>
<td>• simple diffusion</td>
<td>* active transport</td>
</tr>
<tr>
<td>• facilitated diffusion</td>
<td>* endocytosis</td>
</tr>
<tr>
<td>• osmosis</td>
<td>* exocytosis</td>
</tr>
</tbody>
</table>

1. **Simple Diffusion**
 • movement of substances from _____ concentration to ______ concentration
 [down concentration gradient]
 [to achieve equilibrium]
 • O₂, CO₂, lipid-soluble substances

2. **Facilitated Diffusion**
 • diffusion across a membrane with aid of _______________
 •

3. **Osmosis**
 • movement of __________ through a
 ________________ from high water conc. to low water conc.
 • water moves toward a higher conc. of solutes

Osmotic Pressure – ability of osmosis to generate enough pressure to move a volume of water

Osmotic pressure increases as the concentration of nonpermeable solutes increases

• hypertonic –
• hypotonic –
• isotonic –
Bio 103 Introduction

Solution is ________ to RBC.

Solution is ___________ to RBC.
Water moves out of cell ➔ ______________.

Solution is ___________ to RBC.
Water moves into cell ➔ ______________.

4. Filtration
 •
 • due to
 • molecules leaving blood capillaries

5. Active Transport
 • _____________ transport substances across a membrane
 • movement ___________the conc. gradient (low to high conc.)
 • requires __________
 • sugars, a.a., Na+, K+

6. Endocytosis
 • cell engulfs a substance
 • three types:
 • pinocytosis –
 • phagocytosis –
 • receptor-mediated endocytosis –

7. Exocytosis
 • “cell-vomiting”
 • substances in a vesicle fuse with C.M.
 • release of neurotransmitters from nerve cells
Bio 103 Introduction

The Cell Cycle
• Life of the cell

• Stages
 • interphase
 • mitosis
 • cytokinesis

A. Interphase
• cell prepares to divide
 - replicates
 - synthesizes new

• G phases –
• S phase –

B. Mitosis (Somatic cell division)
• produces two daughter cells from diploid parent cell

• nucleus divides –

• cytoplasm divides -
• 4 stages
 Stage 1: Prophase
 -
 -

 Stage 2: Metaphase
 -
 -

 Stage 3: Anaphase
 -

 Stage 4: Telophase
 -
Cytokinesis
• takes place during telophase
• 2 new daughter cells formed

C. **Meiosis** (Reproductive Cell Division)
• occurs only in production of gametes
• takes place in 2 successive nuclear divisions:
 Meiosis I
 Meiosis II

Interphase - Chromosomes replicate

Meiosis I

Prophase I
- chromosomes line up in homologous pairs *(synapsis)*
- **tetrad formation**
- **crossing over** = exchange of genes
 ==> variety in the species

Metaphase I
- paired chromosomes line up on equator of cell
- centromeres attach to spindle fibers

Anaphase I
- separation of homologous pair to opposite poles
 - **centromeres do not split**

Telophase I
- cytokinesis

Meiosis II
[No real interphase]
Prophase II
Metaphase II
Anaphase II
Telophase II

Spermatogenesis
- 4 _____________ produced

Oogenesis
- 4 cells produced:

Meiosis I:
 Reduction division
 Start with 2n parent cell ==> ______________

Meiosis II:
 Equatorial division
 Each haploid cell divides ==> ______________

D. Control of Cell Division
 • cell division varies among cell types
 • skin and blood cells divide often and continually
 • neuron cells divide a specific number of times then cease
 • growth factors and hormones stimulate cell division
 • hormones stimulate mitosis of SMC in uterus
 • epidermal growth factor stimulates growth of new skin
 • contact (density dependent) inhibition
 • tumors are the consequence of a loss of cell cycle control

E. Tumors
 Two types of tumors
 • benign – usually remains localized
 • malignant – invasive and can metastasize; cancerous

 Two major types of genes cause cancer
 • oncogenes – activate other genes that increase cell division
 • tumor suppressor genes – normally regulate mitosis; if inactivated they are unable to regulate mitosis

F. Stem and Progenitor Cells
 Stem cell
 • can divide to form two new stem cells
 - self-renewal
 • can divide to form a stem cell and a progenitor cell
 • totipotent – can give rise to every cell type
 • pluripotent – can give rise to a restricted number of cell types

 Progenitor cell
 • committed cell
 • can divide to become any of a restricted number of cells
 • pluripotent