STRUCTURE AND FUNCTION:

JOINTS
Joints

- A “connection” between 2 or more bones
- A pivot point for bony motion
- The “features” of the joint help determine
 - The ROM
 - Degrees of freedom
 - Functional potential of the joint
Axial Skeleton

- The Axial Skeleton makes up the central bony axis of the body and is composed of:
 - the skull
 - hyoid bone
 - sternum
 - ribs
 - vertebral column
 - sacrum
 - coccyx
Appendicular Skeleton

- Just as the name suggests, the appendicular skeleton is composed of the appendages or extremities:
 - This includes the supporting structures
Primary Types of Tissue

- **Cortical (compact)** – outmost portions of bone
 - Strong
 - Dense
 - Absorptive (forces)
- **Cancellous (spongy)** – inner portions of bone
 - Porous
 - Lightens the bone
 - Redistributes forces & is covered by articular cartilage
Structural Features of Bone

- Diaphysis
- Epiphyses (2)
 - Proximal
 - Distal
- Articular cartilage – hyaline cartilage
- Periosteum
- Medullary canal
- Endosteum
Primary Types of Bones

• Five categories
 • Long
 • Sesamoid
 • Irregular
 • Flat
 • Short
Joint Classifications

- **Synarthrosis**
 - Allows little to no movement
 - Sutures in the skull
 - Distal tibiofibular joint

Suture lines
Joint Classifications

- Amphiarthrosis
 - Formed by fibro and hyaline cartilage
 - Shock absorbers
 - Allows limited motion
Joint Classifications

- **Diarthrosis (Synovial Joints)**
 - Contains fluid-filled cavity between 2 or more bones
 - There are 7 categories with 7 common elements!

<table>
<thead>
<tr>
<th>What</th>
<th>Why</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synovial fluid-</td>
<td>for joint lubrication & nutrition</td>
</tr>
<tr>
<td>Articular cartilage-</td>
<td>to spread out and absorb forces</td>
</tr>
<tr>
<td>Articular capsule-</td>
<td>to contain the joint</td>
</tr>
<tr>
<td>Synovial membrane-to</td>
<td>produce the fluid for the joint</td>
</tr>
<tr>
<td>Capsular ligaments-</td>
<td>to limit excessive joint motion</td>
</tr>
<tr>
<td>Blood vessels-</td>
<td>to provide nutrients, permit healing to occur!</td>
</tr>
<tr>
<td>Sensory nerves-</td>
<td>transmit pain and awareness of position (proprioception)</td>
</tr>
</tbody>
</table>
Synovial Joint Classifications

The structure of the joint determines the functional potential for the joint. Most of the names intentionally resemble functional structures!

- Hinge
- Pivot
- Ellipsoid
- Ball-and-Socket
- Condyloid
- Saddle
- Plane
Hinge Joint

<table>
<thead>
<tr>
<th>Degrees of Freedom</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Motions</td>
<td>Flexion and extension</td>
</tr>
<tr>
<td>Mechanical Analogy</td>
<td>Door hinge</td>
</tr>
<tr>
<td>Anatomic Examples</td>
<td>Humero-ulnar joint, interphalangeal joints</td>
</tr>
</tbody>
</table>
Pivot Joint

<table>
<thead>
<tr>
<th>Degrees of Freedom</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Motions</td>
<td>Spinning one member on an axis</td>
</tr>
<tr>
<td>Mechanical Analogy</td>
<td>Door knob</td>
</tr>
<tr>
<td>Anatomic Examples</td>
<td>Proximal radioulnar joint</td>
</tr>
</tbody>
</table>
Elipsoid Joint

<table>
<thead>
<tr>
<th>Degrees of Freedom</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Motions</td>
<td>Flex & Ext, ABD & ADD</td>
</tr>
<tr>
<td>Mechanical Analogy</td>
<td>Flattened convex with concave trough</td>
</tr>
<tr>
<td>Anatomic Examples</td>
<td>Radiocarpal joint</td>
</tr>
</tbody>
</table>
Ball & Socket Joint

<table>
<thead>
<tr>
<th>Degrees of Freedom</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Motions</td>
<td>Flex & Ext, ABD & ADD, IR & ER</td>
</tr>
<tr>
<td>Mechanical Analogy</td>
<td>Spherical convex surface & concave cup</td>
</tr>
<tr>
<td>Anatomic Examples</td>
<td>Glenohumoral joint and hip</td>
</tr>
</tbody>
</table>
Plane Joints

<table>
<thead>
<tr>
<th>Degrees of Freedom</th>
<th>Variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Motions</td>
<td>Slide &/or rotation</td>
</tr>
<tr>
<td>Mechanical Analogy</td>
<td>Book sliding or spinning on a table</td>
</tr>
<tr>
<td>Anatomic Examples</td>
<td>Intercarpal joints, intertarsal joints</td>
</tr>
</tbody>
</table>
Saddle Joints

<table>
<thead>
<tr>
<th>Degrees of Freedom</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Motions</td>
<td>Bilpanar, excluding spin</td>
</tr>
<tr>
<td>Mechanical Analogy</td>
<td>Horseback rider on a saddle</td>
</tr>
<tr>
<td>Anatomic Examples</td>
<td>CMC joint of the thumb, Sternoclavicular joint</td>
</tr>
</tbody>
</table>
Condyloid Joint

<table>
<thead>
<tr>
<th>Degrees of Freedom</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Motions</td>
<td>Biplanar Motion</td>
</tr>
<tr>
<td>Mechanical Analogy</td>
<td>Spherical convex surface & concave cup</td>
</tr>
<tr>
<td>Anatomic Example</td>
<td>Tibiofemoral joint, MCP joint</td>
</tr>
<tr>
<td>Joint</td>
<td>Degrees of Freedom</td>
</tr>
<tr>
<td>-------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>Hinge</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Pivot</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Ellipsoid</td>
<td>2</td>
</tr>
<tr>
<td>Ball-and-socket</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Plane</td>
<td>Variable</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Saddle</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Condyloid</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABLE 2-1 TYPES OF SYNOVIAL JOINTS.

(Modified from Neumann DA: Kinesiology of the musculoskeletal system: foundations for physical rehabilitation, St Louis, 2002, Mosby, Table 2-3. Some items previously published.)
Connective Tissue

- All connective tissues that support the joints of the body are composed of:
 - Fibers
 - There are 3 types of fibers
 - Type I collagen
 - Thick and resist stretching
 - Ligaments, tendons & fibrous capsules
 - Type II collagen
 - Thinner and less stiff
 - Provide a flexible framework to maintain the shape & consistency of the structures such as hyaline cartilage
 - Elastin
 - Elastic and help prevent injury due to ability to “give” and not break
Connective Tissue

- All connective tissues that support the joints of the body are composed of:
 - Ground substance
 - Collagen & elastin within a water saturated matrix
 - Cells
 - Responsible for maintenance & repair
Connective Tissue: Joint “support”

Ground substance
Disperses repetitive forces
- Water
- Glycosaminoglycans
- Solutes

Cells – “cytes”
Cells for maintenance and repair.
- Blastocyes,
- phagocytes

Why do bones need maintenance & repair?
Types of Connective Tissue in Joints

- **Dense Irregular Connective Tissue**
 - Binds bones together
 - Makes up ligaments & external joint capsule
 - Type I collagen

- **Injuries**
 - Ruptured Lateral Collateral ligaments in the ankle, instability in the talocrural ligament
Types of Connective Tissue in Joints

- **Articular Cartilage**
 - Resists compressive and shear forces in articular surfaces
 - Covers the ends of articulating surfaces of bones in synovial joints
 - High % type II collagen content which helps to anchor the cartilage to the bone

- **Injuries**
 - Wear & tear decreases its effectiveness in reducing compression leading to OA and joint pain & inflammation.
Types of Connective Tissue in Joints

- **Fibrocartilage**
 - Provides support & stabilization to joints, resists compression & shear forces
 - Makes up the intervertebral discs and menisci of the knees
 - Multidirectional bundles of type I collagen

- **Injuries**
 - Tearing can cause disruption of the integrity of the structure and pain with loss of function
Types of Connective Tissue in Joints

- **Bone**
 - Forms primary supporting structure of the body & a rigid level to transmit the force of muscle to move & stabilize the body
 - Forms internal levers of musculoskeletal system
 - Specialized arrangement of Type I collagen & framework for hard mineral salts

- **Injuries**
 - osteoporosis
Types of Connective tissue

1. **Dense irregular** (attachment points)
 a. Ligaments
 b. Joint capsule

2. **Articular cartilage** (ease of movement)
 a. Covering at the end of bones of synovial joints

3. **Fibrocartilage** (the shock absorbers)
 a. Menisci *pleural of “meniscus”*
 b. Intervertebral discs

4. **Bone** – (the levers in the musculoskeletal system)
Dancing Bones
http://www.youtube.com/watch?v=GJMwq_BZ53k

Skully
http://www.youtube.com/watch?v=gpmnxvA2Zf8

Sleight of Hand
http://www.youtube.com/watch?v=NNrqedPg6_Q
<table>
<thead>
<tr>
<th>Mechanical Specialization</th>
<th>Anatomic Location</th>
<th>Fiber Types</th>
<th>Clinical Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dense irregular connective tissue</td>
<td>Binds bones together and restrains unwanted movement of joints</td>
<td>Composes ligaments and the tough external layer of joint capsules</td>
<td>Primarily type I collagen fibers; low elastin fiber content</td>
</tr>
<tr>
<td>Articular cartilage</td>
<td>Resists and distributes compressive and shear forces transferred through articular surfaces</td>
<td>Covers the ends of articulating bones in synovial joints</td>
<td>High type II collagen fiber content; fibers help anchor the cartilage to bone</td>
</tr>
<tr>
<td>Fibrocartilage</td>
<td>Provides support and stabilization to joints; primarily functions to provide shock absorption by resisting and dispersing compressive and shear forces</td>
<td>Composes the intervertebral discs of the spine, and the menisci of the knee</td>
<td>Multidirectional bundles of type I collagen</td>
</tr>
<tr>
<td>Bone</td>
<td>Forms the primary supporting structure of the body and provides a rigid lever to transmit muscle force to move and stabilize the body</td>
<td>Forms the internal levers of the musculoskeletal system</td>
<td>Specialized arrangement of type I collagen that provides a framework for hard mineral salts</td>
</tr>
</tbody>
</table>

(Modified from Neumann DA: Kinesiology of the musculoskeletal system: foundations for physical rehabilitation, St Louis, 2002, Mosby, Table 2-2. Some items previously published.)