COURSE OUTLINE

COS231 Fundamentals of Computer Architecture & Assembly Language

Course Number Course Title

4 3 Lecture Hours/Week and 2 Lab Hours/Week
Credits

Catalog description:
Explores the levels of organization in digital computers: logic circuit design, integrated circuits and assembly language coding

Prerequisites: COS102 or permission of department Corequisites: none

Required texts/other materials:
Principles of Computer Architecture, Murdocca and Heuring, Prentice Hall

Last revised: 12/15

Course coordinator: Don Reichman/David Bostain

Information resources: Instructor's website: http://cos231.drbco.com/

Other learning resources: LogicWorks 5.0 circuit design software
Course goals: The successful student will become familiar with the concepts and definitions related to:

- the structure and organization of "industry standard" personal computers (ISPC)
- the instruction-set architecture of the Intel 80x88 microprocessor
- computer-memory hierarchy comprising CPU registers, cache memory, random memory (RAM), and disks
- the representation of integer, character, string quantities in the ISPC
- input and output of data via keyboard, monitor, printer, magnetic disc
- the software stored in the read-only memory (ROM) of an ISPC
- the design of algorithms for accessing CPU registers, memory, disks, and external devices
- the use of an ISPC assembly language to translate machine-related algorithms into executable programs; monitors and loaders
- the implementation of machine structures (registers, RAM, ROM, display) in terms of digital circuits and logic gates

Course-specific General Education goals and objectives.

Critical thinking, problem solving and information literacy: Students will use critical thinking and problem solving skills in analyzing information gathered through different media and from a variety of sources.

Students will identify a problem and analyze it in terms of its significant parts and the information needed to solve it.
Students will use computers to access, analyze or present information, solve problems, and communicate with others.
Students will formulate and evaluate possible solutions to problems, and select and defend the chosen solutions.
Students will recognize weaknesses in arguments, such as the use of false or disputable premises, suppression of contrary evidence, faulty reasoning, and emotional loading.
Units of study in detail:

Unit 1 Levels of Computer Architecture
At the completion of Unit 1 the student will be able to:
- summarize the history of computer architecture
- identify the basic parts of a computer
- formulate a high level view of a computer system
 Topics
 The Von Neumann Model
 The System Bus Model
 Levels of Machines
 Upward Compatibility
 The Levels
 A Typical Computer System

Unit 2 Data Representation
At the completion of Unit 2 the student will be able to:
- understand how information is represented
- describe the most important encodings
- Use binary, octal and hexadecimal numbers
 Topics
 Fixed Point Numbers
 Floating Point Numbers
 Character Codes

Unit 3 Digital Logic
At the completion of Unit 3 the student will be able to:
- understand the logical makeup of digital components
- write truth tables for AND, OR, NAND, NOR, NOT, XOR and XNOR gates
- name the kinds of digital integrated circuit technologies
- analyze latch and flip-flop circuits using timing diagrams
- analyze buffer and shift register circuits
- analyze counter circuits
- explain bus organization
- explain the differences between ROM, PROM, and EPROM
- explain the difference between ROM and RAM, and between static and dynamic memory
- describe the synthesis of combinational logic circuits
 Topics
 Truth Tables
 Boolean Algebra
 Logic Equations
Unit 4 Electronic Implementation of Logic and Reduction of Digital Logic

At the completion of Unit 4 the student will be able to:
- understand the electrical devices in logic gates
- describe the function of buffers
- use Boolean algebra and Karnaugh maps in the design of combinational logic circuits
- understand computational completeness
- interpret circuit diagrams
- interpret a data sheet

Topics
- Logic Gates
- Properties of Boolean Algebra
- The Sum-of-Products Form, and Logic Diagrams
- The Product-of-Sums Form
- Positive vs. Negative Logic
- The Data Sheet
- Karnaugh Maps

Unit 5 Arithmetic

At the completion of Unit 5 the student will be able to:
- Explain fixed point addition, subtraction, multiplication and division
- Describe BCD and floating point arithmetic

Unit 6 The Instruction Set Architecture and Languages

At the completion of Unit 6 the student will be able to:
- describe the basic architectural components involved in program execution
- state the role of the system bus in interconnecting the components
- describe the low level machine
- discuss the compilation, and assembly processes
- describe linking, loading and macros
- use assembly language instruction sets to write assembly language programs
- explain microinstruction, macroinstruction, microprogramming

Unit 7 Datapath, Control, Memory and I/O

At the completion of Unit 7 the student will be able to:
- analyze step-by-step the datapath and control unit both microprogrammed and hardwired
- discuss ram, cache and virtual memory
- describe bus communications and bus access methods
Unit 8 Communication
At the completion of Unit 8 the student will be able to:
- describe various network architectures and protocols
- compare error detection and correction methods

Unit 9 Trends in Computer Architecture
At the completion of Unit 9 the student will be able to:
- state the motivation for RISC processors and VLIW machines
- describe parallel and distributed architecture systems

Unit 10 Circuit Design
At the completion of Unit 10 the student will be able to:
- use the LogicWorks software as a virtual workbench to design, test and document circuits

Evaluation of student learning:

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Labs/Participation</td>
<td>20%</td>
</tr>
<tr>
<td>Homework/Quizzes</td>
<td>20%</td>
</tr>
<tr>
<td>Projects</td>
<td>20%</td>
</tr>
<tr>
<td>Tests</td>
<td>20%</td>
</tr>
<tr>
<td>Final Exam</td>
<td>20%</td>
</tr>
</tbody>
</table>

Academic Integrity Statement:
Mercer County Community College is committed to Academic Integrity -- the honest, fair and continuing pursuit of knowledge, free from fraud or deception. This implies that students are expected to be responsible for their own work and that faculty and academic support services staff members will take reasonable precautions to prevent the opportunity for academic dishonesty.

See http://www.mccc.edu/admissions_policies_integrity.shtml for a complete explanation of policies and procedures regarding academic integrity and academic integrity violations.