Agenda

Prof. Porter

Find the derivative $y^{\prime}(x)$ implicitly.
$\sqrt{x y}-6 y^{2}=87$

$$
\begin{aligned}
& \left.\begin{array}{l}
\text { Find the defriative }{ }^{\prime}(x) \text { inpluidily. } \\
\sqrt{x y}-6 y^{2}-87 \\
d x
\end{array}(x y)^{1 / 2}-6 y^{2}=87\right] \\
& \frac{1}{2}(x y)^{-1 / 2} \cdot \frac{d}{d x}(x y)-12 y y^{\prime}=0 \\
& \left.2 x \sqrt{\frac{1}{2 \sqrt{x y}}} \cdot\left(x y^{\prime}+y\right)-12 y y^{\prime}=0\right] \\
& x y+y-24 y \sqrt{x y} y=0 \\
& y^{\prime}=\frac{-y(x-24 y \sqrt{x y})(y)=-y}{x-24 y \sqrt{x y}}
\end{aligned}
$$

Lecture: Local Linear Approximations

What is Math?
What is Precalculus?
What is Calculus?
What are the two rates of change?
How do we get from two points to one?
What is the meaning of velocity?
What applications have done with derivative?

Velocity is

the Derivative is
the instantaneous rate of change is
the slope of the tangent line

Applications: Newtons Method for solving equations and Local Linear Approximations

Local Linear Approximation

In mathematics, linearization is finding the linear approximation to a function at a given point.

Find the equation of the tangent line at a center point near where you will be working that can be evaluated in the function by hand.

Suppose you want the sqaure root of 12. You can approximate it by finding the tangent line of square root at 9 or 16 because they are perfect squares. 9 is closer to 12 .

Calculator could just find square root of twelve, so must do this by hand.

NORMAL FLOAT AUTO a+bi DEGREE MP

Equation of tangent line near 9.

$$
\begin{aligned}
& f(x)=x^{1 / 2} \quad f^{\prime}(x)=(1 / 2) x^{-1 / 2} \\
& f(9)=3 \quad f^{\prime}(9)=(1 / 2)(1 / 3)=(1 / 6)
\end{aligned}
$$

Point $(9,3)$ Slope is $1 / 6$
$y-3=(1 / 6)(x-9)$
Linearization: $y=(1 / 6)(x-9)+3$
(its the equation of a line)

$$
y(12)=(1 / 6)(12-9)+3=3.5
$$

For $5(45)$ use a center like $a=49$ Point $(49,7)$ Slope $=1 / 14$
Line: $y=(1 / 14)(x-49)+7$
For $\sqrt{ }(92)$ use a center like $a=100$
Point $(100,10)$ Slope $=1 / 20$
Line: $y=(1 / 20)(x-100)+10$

Note: For the (20) use a center of 27 because 27 is a perfect cube.

When the center is close, the approximation is close.

Otherwise....garbage

Where is this used?

In chemistry there is a point where you must find $\sin [x]$, but $[x]$ is always very small. So what is a good linear approximation for $\sin [x]$ when x is approximately zero?

Center: $a=0 \quad$ Point $(0, \sin 0)=(0,0)$
Slope of Tangent Line: $y^{\prime}=\cos x y^{\prime}(0)=1$
Linearization: $y-0=1(x-0)$ or $y=x$
So they replace $\sin [x]$ with just $[x]$. Much easier to use!
EX: To find the $\sin (.001)$ just use .001 .

Find the linear approximation at $x=0$ to show that the following commonly used approximations are valid for "small" x. Compare the approximate and exact values for $x=0.01, x=0.1$, and $x=1$. Round your calculations to seven decimal places if needed.

$$
2 \tan (x) \approx 2 x
$$

	$L(x)$	$f(x)$
$x=0.01$.02	
$x=0.1$.2	
$x=1$	2	

linearization done already.

Round your final answer to four decimal places.
Use linear approximation to estimate the quantity $\sin \left(\frac{7}{3}\right)$.
(())

What is near $7 / 3$ that can be evaluated exactly with sine function? $\sin (?)=1 / 2$
$7 / 3=2.33$ near $5 \pi / 6=2.62$
$a=5 \pi / 6$ point: $(5 \pi / 6,1 / 2)$ slope: $y^{\prime}=\cos (5 \pi / 6)=-\sqrt{(3)} / 2$
$y-1 / 2=-5(3) / 2(x-5 \pi / 6)$
$y(7 / 3)=(-\sqrt{ }(3) / 2)(7 / 3-5 \pi / 6)+1 / 2$

NORMAL FLOAT fUTO REAL RADIAN CL
$-\sqrt{ }(3) / 2 *(7 / 3-5 \pi / 6)+.5$
.7465232631

NOTE: not a good exam questions. Need a calculator to answer, could just get $\sin (7 / 3)$

RELATED RATES

In differential calculus, related rates problems involve finding a rate at which a quantity changes by relating that quantity to other quantities whose rates of change are known. The rate of change is usually with respect to time.

Process:

1. Find the main idea as a formula.
2. Differentiate with respect to time.
3. Identify all values and rates.
4. Solve for the unknown

The problem will contain rates that say "something per time" like: "miles per hour" or "feet per second" or "\$ per day" Listen for the word "per"

These rates will be express as derivatives with respect to time like: $d y / d t, d f / d t, d R / d t$
where t will be the time variable. Make sure units are same.

The problem will also contain values that say " time is", "distance is", "radius is", etc. These will be represnted with regular variables \dagger, D, R, etc.

The problem will contain a main idea. It can be expressed as a regular function like " $f(x)=$..." or " $R(p)=$...." or it can be one of the many formulas you already know like "Area=LxW", or the pyhagorean formula " $x^{2}+y^{2}=z^{2}$."

To solve thes problems, you are going to have to differentiate the entire formula with respect to time $d / d t$. That means likely none of your varaibles will match, and you'll have to use the chain rule.

EX: $\quad \frac{d}{d t}\left(y^{2}\right)=2 y \frac{d y}{d t} \quad$ OR $\frac{d}{d t}$ Area $=d(L x W)=L \frac{d W}{d \dagger}+W \frac{d L}{d \dagger}$

EX:Suppose that the average yearly cost per item for producing x items of a business product is

$$
\bar{C}(x)=14+\frac{243}{x} .=14+243 x^{-1}
$$

If the current production is $x=9$ and production is increasing at a rate of 3 items per year, find the rate of change of the average cost.
Main idea given as a function, so $d C / d t=-243 x^{-2}(d x / d t)$

$$
\begin{aligned}
& x=9 \text { is given, and } d x / d t=3 \text { is given too. } \\
& d c / d t=-243(1 / 81)(3)=9 \text { cost per year }
\end{aligned}
$$

```
EX: A baseball player stands 2 meters from home plate and watches a pitch fly by. In the diagram, \(x\) is the distance from the ball to home plate and \(\theta\) is the angle indicating the direction of the player's gaze. Find the rate \(\theta^{\prime}\) at which his eyes must move to watch a fastball with \(x^{\prime}(t)=-46 \mathrm{~m} / \mathrm{s}\) as it crosses home plate at \(\boldsymbol{x}=0\).
```


$\boldsymbol{\theta}^{\prime}=\square \mathrm{rad} / \mathrm{s}$.
$\sec ^{2}(\theta) d \theta / d t=(1 / 2) d x / d t$
$\sec ^{2}(0) d \theta / d t=(1 / 2)(-46)$
$\sec (0)=1$, so $d \theta / d t=-23 \mathrm{~m} / \mathrm{s}$

Main idea is from SOHCAHTOA
x is opposite, 2 is adjacent, TOA is needed $\tan (\theta)=x / 2$
$\mathrm{d} / \mathrm{dt} \tan (\theta)=\mathrm{d} / \mathrm{dt} x / 2$
$\sec ^{2}(\theta) d \theta / d t=(1 / 2) d x / d t$
Three unknown, a value and two rates $d x / d t=-46$ When $x=0$, so does θ

EX: The frequency at which a guitar string vibrates (which determines the pitch of the note we hear) is related to the tension T to which the string is tightened, the density ρ of the string, and the effective length L of the string by the equation $\boldsymbol{f}=\frac{\mathbf{1}}{\mathbf{2 L}} \sqrt{\frac{T}{\rho}}$. By running a finger along a string, a guitarist can change the distance between the bridge and their finger. Suppose that $L=\mathbf{1 / 2} \mathbf{m}$ and $\sqrt{\frac{T}{\rho}}=\mathbf{7 0} \mathbf{m} / \mathrm{s}$ so that the units of f are Hertz (cycles per second).

If the guitarist's hand slides so that $L^{\prime}(t)=-1$, find $f^{\prime}(t)$. At this rate, how long will it take to raise the pitch one octave (that is, double f)?

The length of time it takes to raise the pitch one octave is \qquad seconds.
Main Idea: $f(t)=1 /(2 L) \star 70$
or $f=35 L^{-1}$
$d f / d t=-35 L^{-2} d L / d t$
Don't let this problem overwhelm you with reading.
$=-35(1 / 2)^{-2}(-1)$
 traveling at $49 \mathrm{~km} / \mathrm{h}$ due west at a point $\frac{\mathbf{2}}{\mathbf{5}}$ kilometer due east of the same intersection. At that instant, the radar in the police car measures the rate at which the distance between the two cars is changing. What does the radar gun register? Main Idea: $\quad x^{2}+y^{2}=z^{2}$

$$
\frac{d / d t x^{2}+d / d t y^{2} z / d z^{2}}{2 x(d x / d t)+2 y(d y / d t)=2 z(d z / d t)}
$$

$65 \mathrm{~km} / \mathrm{h}$ is the rate $\mathrm{dy} / \mathrm{dt}$ (negative)

$$
4 / 5 \mathrm{~km} \text { is the ' } \mathrm{y} \text { ' value }
$$

$49 \mathrm{~km} / \mathrm{h}$ is the rate $\mathrm{dx} / \mathrm{dt}$ (negative)
$2 / 5 \mathrm{~km}$ is the ' x ' value

$$
2 x(d x / d t)+2 y(d y / d t)=2 z(d z / d t)
$$

$5 / 6$ variables; can find $d z / d t$ Use the main formula to find z :

$$
z=\sqrt{ }\left((2 / 5)^{2}+(4 / 5)^{2}\right)
$$

$$
z^{\prime}=\frac{x x^{\prime}+y y^{\prime}}{z}=\frac{(-49)(2 / 5)+(-65)(4 / 5)}{\sqrt{ }(20 / 25)}=-80.0512
$$

NOTE: Give only positive answer

TEST Taking Advice: just intended to help- not required

1. Take the test in a similar environment to how you study.
2. Take the test at the same time you study
3. Practice the test at the same time and for the same time
4. Do the easy problems first, come back to the harder ones
5. Practice concentraing for two hours, its the length of final

Don't eat unusual or artificial foods before the test.

- No artificial sweeteners (sugar is OK for test)
- No artificial Salts (MSG) It is in almost everything. Avoid the ingrediaent "natural flavors." It's Sometimes MSG.
-MSG in most mexican, chinese dishes. Italian, Indian are fine, but not for the first time.

Don't have to urinate during the exam.
-You may be losing mental resources without knowing it.
-You may not even know you have to "go" and give up too fast
-So don't eat melon, slurpee, soda, coffee, tea before exam

