Compute the exact work done by the force field \(\mathbf{F}(x, y, z) = (3y, 6z, 4x) \) acting on an object as it moves along the helix defined parametrically by \(x = 3 \cos t \), \(y = \sin t \), and \(z = 2t \), from the point \((3, 0, 0)\) to the point \((-3, 0, 0)\).

\[
\mathbf{F} = \int_0^\pi \mathbf{F}(\mathbf{r}(t)) \cdot d\mathbf{r}
\]

\[\mathbf{r}(t) = \langle 3\cos t, \sin t, 2t \rangle\]
\[d\mathbf{r} = \langle -3\sin t, \cos t, 2 \rangle dt\]
\[\mathbf{F} = \langle 9\sin t, 3\cos t, 3y \rangle \cdot \langle 3\cos t, \sin t, 2 \rangle
\]
\[
= \int_0^\pi 27 \sin^2 t + 10 \cos^2 t + 24 \sin t \, dt
\]

\[= 8\pi.
\]

Evaluate the line integral.
\[
\int_C 7x \, ds, \text{ where } C \text{ is the line segment from (1, 1) to (7, 6)}
\]

\(\mathbf{r}(t) = \langle 1 + 6t, 2 + 4t \rangle \)

\(0 \leq t \leq 1
\]

\[
\int_0^1 7(1 + 6t) \sqrt{(6)^2 + (4)^2} \, dt
\]

\[= \frac{7}{2} \left[(7 + 42t) - 0 \right]_0^1
\]

\[= 28\pi.
\]

Evaluate the line integral.
\[
\int_C 7x \, ds, \text{ where } C \text{ is the line segment from (1, 2) to (7, 6)}
\]

\[
x = 1 + 6t, \quad y = 2 + 4t, \quad 0 \leq t \leq 1
\]
\[
dt = \frac{dt}{\sqrt{(6)^2 + (4)^2}}
\]
\[
= \frac{dt}{2 \sqrt{13}}
\]
\[
\int_C 7x \, ds = \int_0^1 (1 + 6t)(2 \sqrt{13}) \, dt
\]

\[= 28\sqrt{13}.
\]
Evaluate the line integral.
\[\int_C 8z \; ds \], where \(C \) is the line segment from (4, 0, 1) to (5, -8, 8)

\[x = 4 + t, \; y = -8t, \; z = 1 + 7t \]
\[0 \leq t \leq 1 \]

\[
ds = \sqrt{(x'(t))^2 + (y'(t))^2 + (z'(t))^2} \; dt = \sqrt{1^2 + (-8)^2 + 7^2} \; dt = \sqrt{114} \; dt
\]

\[
\int_C 8z \; ds = \int_0^1 8(1 + 7t)\sqrt{114} \; dt = 36\sqrt{114}
\]

Compute the work done by the force field \(F \) along the curve \(C \).
\(F(x, y) = \langle 2x, 2y \rangle \), \(C \) is the line segment from (2, 1) to (6, 4)

\[
X = 2 + 4t
\]
\[
Y = 1 + 3t
\]

\[
\int_0^1 \langle 2(2+4t), 2(1+3t) \rangle \cdot \langle 4, 3 \rangle \; dt
\]
\[
\int_0^1 \langle 8(2+4t) + 6(1+3t) \rangle \; dt
\]
2D

\[\nabla \mathbf{P} \]
\[\left\langle \begin{array}{c} p_x \\ p_y \end{array} \right\rangle \]
\[\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x} \]
\[p_{xy} = p_{yx} \]

3D

\[\nabla \mathbf{P} \]
\[\left\langle \begin{array}{c} m \\ n \\ p \end{array} \right\rangle \]
\[\left\langle \begin{array}{c} 2p_x \\ 2p_y \\ 2p_z \end{array} \right\rangle \]
\[\left\langle \begin{array}{c} M_y - N_x \\ M_z - P_x \\ N_z - P_y \end{array} \right\rangle \]
\[\left\langle \begin{array}{c} 0 \\ 0 \\ 0 \end{array} \right\rangle \]
\[\left\langle \begin{array}{c} 1 \\ -0 \\ 0 \\ 0 \\ 0 \end{array} \right\rangle \]
Using the graph, determine if the work done is positive, negative, or zero.

\[
\langle 0, 1 \rangle \cdot \langle 0, -1 \rangle = -1
\]

Find the mass of a spring in the shape of the helix defined parametrically by

\[x = 8 \cos t, \quad y = 8t, \quad z = 8 \sin t, \quad \text{for } 0 \leq t \leq 10\pi, \quad \text{with density } \rho(x, y, z) = 4y.\]

- A. \(1797 \pi^2 \sqrt{5}\)
- B. \(1290 \pi^2 \sqrt{3}\)
- C. \(1280 \pi^2 \sqrt{2}\)
- D. \(1797 \pi^2 \sqrt{2}\)

\[
M = \int_{\pi}^{2\pi} \rho(x(t), y(t), z(t)) \, dt
\]

\[
= \int_{\pi}^{2\pi} 4y(t) \, dt
\]

\[
= \left. \frac{4}{9} \left(\frac{y(t)^3}{3} + 2 \right) \right|_{\pi}^{2\pi}
\]

\[
= \frac{4}{9} \left(\frac{8^3}{3} + 2 - \frac{8^3}{3} - 2 \right)
\]

\[
= \frac{4}{9} \cdot \frac{512}{3}
\]

\[
= \frac{2048}{27}
\]

\[
= \frac{256 \pi^2}{3}
\]

\[
\int_0^{10\pi} \sqrt{(x'(t))^2 + (y'(t))^2 + (z'(t))^2} \, dt
\]

\[
= \int_0^{10\pi} \sqrt{8^2 + 8^2 + 8^2} \, dt
\]

\[
= \int_0^{10\pi} \frac{4}{\sqrt{3}} \, dt
\]

\[
= \frac{4}{\sqrt{3}} \left(10\pi - \pi \right)
\]

\[
= \frac{256 \pi^2}{3}
\]
Show that for \(F(x, y) = (2x + 2y, x^2 + y^2) \), the line integral \(\int_C F \cdot dr \) is independent of path. Then, evaluate the line integral for any curve \(C \) with initial point at \((-3, 4)\) and terminal point at \((3,7)\).

Your Answer:

\[
\begin{align*}
M_y &= 2y \\
N_x &= 2x \\
\end{align*}
\]

Conservative \(\iff \) Path Independent

Fundamental Theorem of Line Integrals

\[
\int_C F \cdot dr = f(3, 7) - f(-3, 4)
\]

\[
\begin{align*}
f &= x^2 y + 5x \\
f_x &= x^2 + 6y + 3 \\
f_y &= x^2 y + 3y + 3 \\
\end{align*}
\]

\[
\begin{align*}
f(3, 7) - f(-3, 4) &= (3^2(7) + 12 + 6) - (-3^2(-4) + 12 + 6) \\
&= 34
\end{align*}
\]

\(\mathbf{C} \cdot \mathbf{v} = -81 \)

Determine whether or not the line integral \(\int_C (e^{3x} + 2x \sin y) \, dx + (6x^2 \cos y) \, dy \) is independent of path.

\(\bigcirc \) A. The line integral is independent of path.

\(\bigcirc \) B. The line integral is not independent of path.

\[
\begin{align*}
M_y &= N_x \\
2x \cos y &= 12x \cos y
\end{align*}
\]

Not Conservative.
Evaluate \(\int_C F \cdot dr \), where

\[
F(x, y, z) = \frac{(1.74x^2, 4.09y^2, 2.04z)}{\sqrt{1.74x^2 + 4.09y^2 + 2.04z^2}}
\]

and \(C \) runs from \((0, 5, 2)\) to \((6, 4, 0)\).

A potential function exists, so the integral is independent of the path.

A potential function is

\[
f(x, y, z) = \sqrt{1.74x^2 + 4.09y^2 + 2.04z^2}.
\]

Thus

\[
\int_C F \cdot dr = \left[\sqrt{1.74x^2 + 4.09y^2 + 2.04z^2} \right]_{(0, 5, 2)}^{(6, 4, 0)} \approx 0.869.
\]

Evaluate \(\int_C F \cdot dr \), where

\[
F(x, y) = (2.77x^2y + 7, 2.77xy^2)
\]

and \(C \) is the bottom half-circle from \((1, 0)\) to \((-1, 0)\).

\[
M_y = 2.77x^2 \quad \text{and} \quad N_x = 2.77y^2,
\]

so the vector field is not conservative

and the line integral is not independent of the path.

For \(0 \leq t \leq \pi\),

\[
\begin{align*}
x &= \cos t, \\
y &= -\sin t.
\end{align*}
\]

\[
\int_C F \cdot dr
\]
\[
- \int_C (2.77x^2y + 7) \, dx + (2.77x y^2) \, dy \\
- \int_0^\pi \left[2.77(\cos^2 t)(-\sin t)(-\sin t) + 7(-\sin t) + 2.77(\cos t)(\sin^2 t)(-\cos t) \right] \, dt \\
- \int_0^\pi -\sin t \, dt \\
= -14
\]

Evaluate the line integral \(\oint_C (6y - e^{\sin x}) \, dx + [16x - \sin (y^3 + 5y)] \, dy \), where \(C \) is the circle of radius 4 centered at the point \((2, -8)\), as shown below.

\[
\int_C \mathbf{F} \cdot d\mathbf{r} = \int_0^{2\pi} \int_R \left(\frac{\partial}{\partial x} - \frac{\partial}{\partial y} \right) N \\
\int_R (16 - 6) \, dy \\
10 \int_R e^y \, dy = 10 \cdot 16\pi \\
= 160\pi
\]
Evaluate the indicated line integral, using Green's Theorem.
\[\oint_C (x^2 - 8y) \, dx + y^2 \, dy \], where \(C \) is the circle \(x^2 + y^2 = 36 \) oriented counterclockwise.

\[\frac{\partial M}{\partial x} = 0 \quad \frac{\partial N}{\partial y} = -8 \]

\[= 8 \iint_R dv = 8 \cdot 36\pi = 836.8 \]
Evaluate the line integral \(\int_C x^2 \, dx - x^3 \, dy \) where \(C \) is the square contour from (0,0) to (0,1) to (1,1) to (1,0) using Green's Theorem.

Your Answer:

\[
\begin{align*}
\frac{2N}{\partial x} &= -3x^2 & \frac{2M}{\partial y} &= 0 \\
\iint_{0}^{1} -3x^2 \, dy \, dx &= \int_{0}^{1} \int_{0}^{1} -3x^2 \, dy \, dx \\
&= -x^3 \bigg|_{0}^{1} = -1 \quad \text{(Change to 1)}
\end{align*}
\]

Use Green's theorem to evaluate the line integral

\[
\int_C (\tan x - 3y^3) \, dx + (3x^3 - \sin y) \, dy,
\]

where \(C \) is the circle \(x^2 + y^2 = 2 \).

\[
\begin{align*}
\frac{2N}{\partial x} &= 9x^2 & \frac{2M}{\partial y} &= -9y^2 \\
9 \iint_{R} (x^2 + y^2) \, dx \, dy &= 9 \int_{0}^{2\pi} \int_{0}^{\sqrt{2}} r^2 \, r \, dr \, d\theta \\
&= 9 \cdot 2\pi \cdot \frac{r^4}{4} \bigg|_{0}^{\sqrt{2}} \\
&= 18\pi
\end{align*}
\]