EXERCISES 13.7

WRITING EXERCISES

- 1. Discuss the relationship between the spherical coordinates angles ϕ and θ and the longitude and latitude angles on a map of the earth. Satellites in geosynchronous orbit remain at a constant distance above a fixed point on the earth. Discuss how spherical coordinates could be used to represent the position of the satellite.
- 2. Explain why any point in \mathbb{R}^3 can be represented in spherical coordinates with $\rho \geq 0, 0 \leq \theta \leq 2\pi$ and $0 \leq \phi \leq \pi$. In particular, explain why it is not necessary to allow $\rho < 0$ or $\pi < \phi \leq 2\pi$. Discuss whether the ranges $\rho \geq 0, 0 \leq \theta \leq \pi$ and $0 \le \phi \le 2\pi$ would suffice to describe all points.
- 3. For simplicity, we restricted ρ to be nonnegative. Discuss what might be meant by spherical coordinates $\rho = -1$, $\phi = \frac{\pi}{4}$ and $\theta = \frac{\pi}{2}$. Discuss possible advantages of such a definition for graphing functions $\rho = f(\phi, \theta)$.
- 4. Using the examples in this section as a guide, make a short list of surfaces that are simple to describe in spherical coordinates.

In exercises 1–6, convert the spherical point $(
ho,\phi, heta)$ into rectangular coordinates.

- 1. $(4,0,\pi)$
- 2. $(4, \frac{\pi}{3}, \pi)$
- 3. $(2, \frac{\pi}{4}, 0)$

- **4.** $(2, \frac{\pi}{4}, \frac{2\pi}{3})$ **5.** $(\sqrt{2}, \frac{\pi}{6}, \frac{\pi}{3})$
- **6.** $(\sqrt{2}, \frac{\pi}{6}, \frac{2\pi}{3})$

In exercises 7-14, convert the equation into spherical coordinates.

7.
$$x^2 + y^2 + z^2 = 9$$

8.
$$x^2 + y^2 + z^2 = 6$$

9.
$$y = x$$

10.
$$z = 0$$

11.
$$z = 2$$

12.
$$x^2 + y^2 + (z - 1)^2 = 1$$

13.
$$z = \sqrt{3(x^2 + y^2)}$$

12.
$$x^2 + y^2 + (z - 1)^2 =$$

14. $z = -\sqrt{x^2 + y^2}$

In exercises 15-20, sketch the graph of the spherical equation and give a corresponding xy-equation.

15.
$$\rho = 2$$

16.
$$\rho = 4$$

17.
$$\phi = \frac{\pi}{4}$$

18.
$$\phi = \frac{\pi}{2}$$

19.
$$\theta = 0$$

$$20. \quad \theta = \frac{\pi}{4}$$

In exercises 21–26, sketch the region defined by the given ranges.

21.
$$0 \le \rho \le 4, 0 \le \phi \le \frac{\pi}{4}, 0 \le \theta \le \pi$$

22.
$$0 \le \rho \le 4, 0 \le \phi \le \frac{\pi}{2}, 0 \le \theta \le 2\pi$$

23.
$$0 \le \rho \le 3, \frac{\pi}{2} \le \phi \le \pi, 0 \le \theta \le \pi$$

24.
$$0 \le \rho \le 3, 0 \le \phi \le \frac{3\pi}{4}, \frac{\pi}{2} \le \theta \le \frac{3\pi}{2}$$

25.
$$2 \le \rho \le 3, \frac{\pi}{4} \le \phi \le \frac{\pi}{2}, \pi \le \theta \le 2\pi$$

26.
$$2 \le \rho \le 3, \frac{\pi}{2} \le \phi \le \frac{3\pi}{4}, 0 \le \theta \le \frac{3\pi}{2}$$

In exercises 27-36, set up and evaluate the indicated triple integral in an appropriate coordinate system.

- 27. $\iiint e^{(x^2+y^2+z^2)^{3/2}} dV$, where Q is bounded by the hemisphere $z = \sqrt{4 - x^2 - y^2}$ and the xy-plane.
- **28.** $\iiint_Q \sqrt{x^2 + y^2 + z^2} \, dV$, where Q is bounded by the hemisphere $z = -\sqrt{9 - x^2 - y^2}$ and the xy-plane.
- **29.** $\iiint z^2 dV$, where Q is inside $x^2 + y^2 + z^2 = 2$ and outside $x^2 + y^2 = 1$.
- **30.** $\iiint e^{\sqrt{x^2+y^2+z^2}} dV$, where Q is bounded by $y = \sqrt{4-x^2-z^2}$
- 31. $\iiint (x^2 + y^2 + z^2) dV$, where Q is the cube with $0 \le x \le 1$, $1 \le y \le 2$ and $3 \le z \le 4$.
- 32. $\iiint (x+y+z) dV$, where Q is the tetrahedron bounded by $x^2 + 2y + z = 4$ and the coordinate planes.
- 33. $\iiint_Q (x^2 + y^2) dV$, where Q is bounded by $z = 4 x^2 y^2$ and the xy-plane.
- **34.** $\iiint e^{x^2+y^2} dV$, where *Q* is bounded by $x^2 + y^2 = 4$, z = 0 and
- 35. $\iiint \sqrt{x^2 + y^2 + z^2} dV$, where Q is bounded by $z = \sqrt{x^2 + y^2}$ and $z = \sqrt{2 - x^2 - y^2}$.
- **36.** $\iiint (x^2 + y^2 + z^2)^{3/2} dV$, where Q is the solid below $z = -\sqrt{x^2 + y^2}$ and inside $z = -\sqrt{4 - x^2 - y^2}$.

In exercises 37-48, use an appropriate coordinate system to find the volume of the given solid.

- 37. The solid below $x^2 + y^2 + z^2 = 4z$ and above $z = \sqrt{x^2 + y^2}$
- 38. The solid above $z = \sqrt{x^2 + y^2}$ and below $x^2 + y^2 + z^2 = 4$
- **39.** The solid inside $z = \sqrt{2x^2 + 2y^2}$ and between z = 2 and z = 4
- **40.** The solid bounded by $z = 4x^2 + 4y^2$, z = 0, $x^2 + y^2 = 1$ and $x^2 + y^2 = 2$
- **41.** The solid under $z = \sqrt{x^2 + y^2}$ and above the square $-1 \le x \le 1, -1 < y < 1$
- **42.** The solid bounded by x + 2y + z = 4 and the coordinate planes
- 43. The solid below $x^2 + y^2 + z^2 = 4$, above $z = \sqrt{x^2 + y^2}$ in the
- **44.** The solid below $x^2 + y^2 + z^2 = 4$, above $z = \sqrt{x^2 + y^2}$, between y = x and x = 0 with $y \ge 0$
- **45.** The solid below $z = \sqrt{x^2 + y^2}$, above the xy-plane and inside $x^2 + y^2 = 4$
- **46.** The solid between $z = 4 x^2 y^2$ and the xy-plane