Agenda

Lecture: Limits, Functions, Continuity, Differentiability

Review: Quizzes for Test 1

Multivariable Functions

\[z = f(x,y) \text{ in 3D} \]
\[w = f(x,y,z) \text{ in 4D} \]
Data
\(w(x, y, z) \)
\((1, 2, 3) \rightarrow 2 \)
\((1, 2, 3) \rightarrow 4 \)

Graph
\(\text{Not} \)

Equation
\(z^2 = x^2 + y^2 \)

Limits
\(\lim_{(x, y) \to (1, 1)} \frac{x^2 - y^2}{x - y} = ? \)
\(\lim_{x \to 1} y = x \)
\(\lim_{y \to x^2} y = x^2 \)
Derivatives

Partial Derivatives

\[\frac{df}{dx} \]

To exist
- Continuous
- No corners
- No cusps

\[y = f(x) \]

Slope of Tangent Line

\[\frac{dz}{dx} \quad \frac{dz}{dy} \]
A paperboy is riding at 12 ft/s on a bicycle and tosses a paper over his left shoulder at 54 ft/s. If the porch is 54 ft off the road, how far up the street should the paperboy release the paper to hit the porch? He should release the paper \(<12,0> \) feet up the road.
2. Award: 10.00 points Problems? Adjust credit for all students.

Identify the geometric shape described by the given equation.

\[(x - 2)^2 + y^2 + (z + 2)^2 - 64 = 0\]

- A. A sphere of radius 8 and center \((2, 0, -2)\).
- B. A sphere of radius 0 and center \((-2, 0, 2)\).
- C. A sphere of radius 8 and center \((-2, 0, 2)\).
- D. A sphere of radius 8 and center \((2, 0, -2)\).

3. Award: 10.00 points Problems? Adjust credit for all students.

Compute the dot product \(a \cdot b\) for \(a = 7i - 4k\) and \(b = -4i + 4k\).

\[a \cdot b = \]

\[<7, 0, -4> \cdot <-4, 0, -4>\]

\[-28 + 0 + 16 = -12\]
4. Award: 10.00 points Problems? Adjust credit for all students.

Find the volume of the parallelepiped with three adjacent edges formed by the vectors
\(\mathbf{a} = \langle 3, 7, 8 \rangle \), \(\mathbf{b} = \langle 4, 6, 5 \rangle \) and \(\mathbf{c} = \langle 4, 8, 0 \rangle \).
The volume of the parallelepiped is
\[|| \mathbf{c} \cdot (\mathbf{a} \times \mathbf{b}) || \]

\[
\begin{vmatrix}
4 & 8 & 0 \\
3 & 7 & 8 \\
4 & 6 & 5
\end{vmatrix}
\]

\[4(35 - 48) - 8(15 - 32) + 0 \]
\[-52 + 136 = 84 \]

5. Award: 10.00 points Problems? Adjust credit for all students.

Please round your answer to three decimals and remember answer is in radians.

Use the cross product to determine the angle between \(\mathbf{a} = 4\mathbf{i} + 2\mathbf{k} \) and \(\mathbf{b} = 3\mathbf{j} + 7\mathbf{k} \).

Your Answer:

\[
\begin{vmatrix}
i & j & k \\
4 & 0 & 2 \\
0 & 2 & 7
\end{vmatrix} = <-4, -28, 8>
\]

\[\cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{||\mathbf{a}|| ||\mathbf{b}||} \]

\[\cos t = \frac{14}{\sqrt{20} \cdot 53} \]

\[t = \arccos \left(\frac{14}{\sqrt{1060}} \right) \]

\[t = 64.53...\text{degrees} \]

\[1.126 \text{ rad} \]
6. Award: 10.00 points. Problems? Adjust credit for all students.

Find the parametric equations for the line passing through \((-2, 1, 3)\) and normal to the plane \(3x - 5y + 5z = 10\).

\[x = \boxed{\quad} \quad y = \boxed{\quad} \quad z = \boxed{\quad} \]

normal = \(<3, -5, 5>\)

\[x = -2 + 3t \quad y = 1 - 5t \quad z = 3 + 5t \]

7. Award: 10.00 points. Problems? Adjust credit for all students.

Find the distance between the point \((4, 0, 8)\) and the plane \(7x - y + 2z = 28\).

\[
\frac{|Ax + By + Cz - D|}{\sqrt{A^2 + B^2 + C^2}} = \frac{28 + 16 - 28}{\sqrt{54}}
\]
8. Sketch the graph of the quadric surface defined by the equation
\[z = 2y^2 - x^2. \]

9. Find parametric equations for the surface \(z = 10 - x^2 - y^2 \).

- A. \(z = \frac{1}{10} - s^2 \), \(x = \frac{1}{4} \cos t \), and \(y = \frac{1}{4} \sin t \)
- B. \(z = 10 - s^2 \), \(x = s \cos t \), and \(y = s \sin t \)
- C. \(z = 10 - s^2 \), \(x = \frac{1}{4} \cos t \), and \(y = \frac{1}{4} \sin t \)
- D. \(z = \frac{1}{10} - s^2 \), \(x = s \cos t \), and \(y = s \sin t \)

elim. makes no sense
\[z = 10 - (s \cos t)^2 - (s \sin t)^2 \]
\[10 - s^2 \ (1) \]
Find \(\lim_{t \to 0} \left\{ e^{2t} + 6, t^2 + 2t - 7, \frac{5}{t} \right\} = \langle 1, -7, 5 \rangle \).

- A. \(\langle 12, -5, 5 \rangle \)
- B. \(\langle 6, -7, 5 \rangle \)
- C. \(\langle 6, 7, 0 \rangle \)
- D. The limit does not exist.

11. Award: 10.00 points Problems? Adjust credit for all students.

Find the derivative of \(r(t) = \langle \cos 9t, \tan t, 2 \sin t \rangle \).

\[\langle -9 \sin 9t, \sec^2 t, 2 \cos t \rangle \]
12. Award: 10.00 points Problems? Adjust credit for all students.

Choose the sketch of the curve traced out by the given vector-valued function.

\[r(t) = (-1, 2\cos t, 2\sin t) \]

\[4\cos^2 t + 4\sin^2 t = 4 \]

\[x = -1 \]

\[y^2 + z^2 = 4 \]

Select the correct answer for \(t \) such that \(r(t) \) and \(r'(t) \) are perpendicular.

\[r'(t) = \langle -3\sin t, 9\cos t \rangle \]

- A. \(r(t) \perp r'(t) \) when \(t = \frac{n\pi}{2} \) for any even integer \(n \).
- B. \(r(t) \perp r'(t) \) when \(t = \frac{n\pi}{4} \) for any integer \(n \).
- C. \(r(t) \perp r'(t) \) when \(t = \frac{n\pi}{4} \) for any integer \(n \).
- D. \(r(t) \perp r'(t) \) when \(t = n\pi \) for any integer \(n \).

\[-9\cos t\sin t + 81\cos t\sin t = 0 \]

\[\cos t\sin t = 0 \]
Choose the sketch of the curve and estimate its arc length.

\[s = \int_{0}^{2} \sqrt{1 + (2t)^2 + (3t^2)^2} \, dt \]

\[r(t) = \begin{cases} \sqrt{t} + y \cdot z^2 \, dt & \text{if } 0 \leq t \leq 2 \\ \sqrt{1 + 4t^3 + 9t^4} \, dt & \text{if } t \geq 2 \end{cases} \]

\[\int_{\text{int} \left(\left(1 + 4x^2 + 9y^2 \right) \right)} \left(\frac{y - 1}{\sqrt{1 + 4x^2 + 9y^2}} \right) \, dx \]

\[C = \int_{0}^{2} \frac{1}{x^{3/2}} \, dx \]

\[v(t) = \langle -16e^{-4t}, 6t^2, -\sin t \rangle + C \]

\[v(0) = \langle -16, 0, 0 \rangle + C = \langle 4, 0, 4 \rangle \]

\[C = \langle 20, 0, 4 \rangle \]

\[v(t) = \langle -16e^{-4t} + 20t, 2t^3, -\sin t + 4 \rangle \]

\[r(t) = \langle 4e^{-4t} + 20t, 2t^3, \cos t \rangle + C \]

\[r(0) = \langle 9, 0, -7 \rangle \]

\[\langle 4, 0, 1 \rangle + \langle 1, 1, 1 \rangle = \langle 5, 1, 2 \rangle \]
16. Award: 10.00 points Problems? Adjust credit for all students.

Select an arc length parameterization of the circle of radius 1, centered at the origin.

- A. \(C : x = \sin \left(\frac{s}{2} \right), y = 2 \cos \left(\frac{s}{4} \right), 0 \leq s \leq 2\pi \)
- B. \(C : x = \cos \left(\frac{s}{4} \right), y = 2 \cos \left(\frac{s}{2} \right), 0 \leq s \leq 2\pi \)
- C. \(C : x = \sin \left(\frac{s}{4} \right), y = 2 \sin \left(\frac{s}{2} \right), 0 \leq s \leq 4\pi \)
- D. \(C : x = 2 \cos \left(\frac{s}{2} \right), y = 2 \sin \left(\frac{s}{2} \right), 0 \leq s \leq 4\pi \)

17. Award: 10.00 points Problems? Adjust credit for all students.

Select the graph of the parametric surface.

\[
x = u \cos v, \quad y = u \sin v, \quad z = u^2
\]

\[
u^2 = \frac{x^2 + y^2}{2}
\]

- A. paraboloid

\[
z = x^2 + y^2
\]
18. Award: 10.00 points Problems? Adjust credit for all students.

Select the parametric equation for the surface.

\[x = v, \quad y = u \cos v, \quad z = u \sin v \] is the parametric equation for the surface, since the position along the x-axis determines the direction of a line in the yz cross section.

19. Award: 10.00 points Problems? Adjust credit for all students.

Select parametric equations for the plane through the point \((5, 3, 10)\) and containing the vectors \(\langle 4, -1, 2 \rangle\) and \(\langle 9, 9, 3 \rangle\).

- A. \(r = \langle 0, 0, 10 \rangle + u \langle 6, -2 \rangle + v \langle -1, -7, -8 \rangle \)
- B. \(r = \langle -1, -7, 6 \rangle + u \langle 5, 3, 10 \rangle + v \langle 4, 6, -2 \rangle \)
- C. \(r = \langle 4, 6, -2 \rangle + u \langle 5, 3, 10 \rangle + v \langle -1, -7, -8 \rangle \)
- D. \(r = \langle 5, 3, 10 \rangle + u \langle -1, -7, -8 \rangle + v \langle 4, 6, -2 \rangle \)