Agenda

Review Quiz 7
Lecture Multiple Integrals
Examples of Multiple Integrals on Connect
Project: Express the volume of the Building
3D Printer

Review Quiz 7
The distance from a point \((x, y)\) to the point \((5, -3, 1)\) is
\[
d(x, y) = \sqrt{(x - 5)^2 + (y + 3)^2 + (z - 1)^2}.
\]
To minimize this it is useful to note that we can minimize \(g(x, y) = d(x, y)^2 = D(x, y)\)

instead.

\[
\begin{align*}
\delta_x &= 2(x - 5) - 4x(3 - x^2 - y^2) = 0 \\
\delta_y &= 2(y + 3) - 4y(3 - x^2 - y^2) = 0 \\
\delta_{xx} &= -10 + 12x^2 + 4y^2 \\
\delta_{xy} &= -10 + 12x^2 + 4x^2 \\
\delta_{yy} &= 8y
\end{align*}
\]

\(\delta_x = \delta_y = 0\) numerically yields \((1.7073, -1.0244)\).

\(D(1.7073, -1.0244) = 15.6747\) and \(x, y = (1.7073, -1.0244) = 15.1761\).

Therefore this point is a minimum.

The closest point on the paraboloid to the point \((5, -3, 1)\) is \((1.7073, -1.0244, 0.0357)\)
A box is to be constructed out of 96 square feet of material. Find the dimensions x, y, and z that maximize the volume of the box.

$x \cdot y \cdot z$ maximizes the volume.

$V = x \cdot y \cdot z$

$xy + yz + zx = 48$

$\nabla V = \langle yz, xz, xy \rangle$

$\nabla g = \langle yz, xz, xy \rangle$

$\nabla V = \lambda \nabla g$

$\lambda (xy + xz + yz) = \lambda (xy + yz) = \lambda (xz + yz) = \lambda (yz + zx) = \lambda (xy + xz + yz)$

$xy + xz + yz = xy + yz$

$xy = yz$

$x = y$

$x = y > z$
For a business that produces three products, suppose that when producing \(x, y, \) and \(z \) thousand units of the products, the profit of the company (in thousands of dollars) can be modeled by \(P(x, y, z) = 2x - 6y + 7z \). Manufacturing constraints force

\(x^2 + 4y^2 + z^2 \leq 800 \)

Find the maximum profit for the company. Round your answers to three decimal places.

The maximum profit is ________.

\[\nabla^2 = \langle 2, 3, 7 \rangle \quad \nabla g = \langle 2x, 8y, 4z \rangle \]

\[2 = 2x \lambda \quad x = \frac{\lambda}{2} \]

\[9 = 8y \lambda \quad y = \frac{9\lambda}{8} \]

\[7 = 4z \lambda \quad z = \frac{7\lambda}{4} \]

\[\left(\frac{\lambda}{2} \right)^2 + 4 \left(\frac{9\lambda}{8} \right)^2 + 2 \left(\frac{7\lambda}{4} \right)^2 = 800 \]

\[x = \frac{\lambda}{2} = 8.10307, \quad y = \frac{9\lambda}{8} = 9.11595, \quad \text{and} \quad z = \frac{7\lambda}{4} = 14.18037. \]

Setting \(\nabla f = \lambda \nabla g + \mu \nabla h \):

Minimize \(f(x, y, z) = x^2 + y^2 + z^2 \), subject to the constraints \(x - 2y + 4z = 0 \) and \(y + z = 0 \).

\[\nabla f = \langle 2x, 2y, 2z \rangle \quad \nabla g = \langle 1, 2, 4 \rangle \quad \nabla h = \langle 0, 1, 1 \rangle \]

\[2x = \lambda + 0 \]

\[2y = 2\lambda + 4\mu \]

\[2z = 4\lambda + \mu \]
Lecture: Multiple Integrals
DEFINITE INTEGRAL--

\[A = \int_{a}^{b} f(x) \, dx \]

INDEFINITE--

\[F(x) = \int f(x) \, dx \quad \text{-- Anti-derivative} \]

\[F(x,y,z) = \int \int f(x,y) \, dx \, dy \]

Not so easy?

\[F_{xy} = f(x,y) \]
\[
\int \int (3x + y) \, dy \, dx \\
\int 3xy + \frac{y^2}{2} \, dx
\]

\[F(x, y) = 3y \frac{x^2}{2} + \frac{y^2}{2}x + C\]

Let \(x\) be a constant

Let \(y\) be a constant

\[
V = \int \int \int \frac{\partial f(x, y)}{\partial x} \, dA
\]

\[
\int_a^b \int_c^d f(x, y) \, dx \, dy
\]
Examples
If \(R = \{(x, y)| 0 \leq x \leq 2 \text{ and } 1 \leq y \leq 4\} \), evaluate

\[
\int_R \int (6x^2 + 7xy^3) \, dA.
\]

We have

\[
\int_R \int (6x^2 + 7xy^3) \, dA = \int_1^4 \int_0^2 (6x^2 + 7xy^3) \, dx \, dy
\]

\[
= \int_1^4 \left[\int_0^2 (6x^2 + 7xy^3) \, dx \right] \, dy
\]

\[
= \int_1^4 \left(\frac{6x^3}{3} + 7 \frac{x^2y^3}{2} \right) \bigg|_{x=0}^{x=2} \, dy
\]

\[
= \int_1^4 \left(16 + 14y^3 \right) \, dy
\]

\[
= \left[16y + \frac{14y^4}{4} \right]_1^4 = \left(64 + \frac{224}{4} \right) - 16 - \frac{14}{4} = 48
\]

Let \(R \) be the region bounded by the graphs of \(y = \sqrt{x}, \ x = 0 \) and \(y = 7 \). Evaluate

\[
\int_R \int (8xy^2 + 2y \cos x) \, dA.
\]

Round your answer to one decimal place.

The value is \boxed{ }
\[
\int_{x=0}^{49} \int_{y=0}^{\sqrt{x}} 2y + 2y \cos x \, dy \, dx = \int_{x=0}^{49} \left[\frac{8x^3}{3} + 2y^2 \cos x \right]_{y=0}^{y=\sqrt{x}} \, dx
\]

\[
\int_{x=0}^{49} \left(\frac{8x^3}{3} + (x^2) \cos x - \frac{8x(\sqrt{x})^3}{3} - (\sqrt{x})^2 \cos x \right) \, dx
\]

\[
\int_{y=0}^{7} \left(\frac{8y^3}{3} + 2y \sin x \right) \, dy
\]

\[
\left(4y^6 + 2y \sin y \right) \bigg|_{y=0}^{y=7} - \left(0 \right) \bigg|_{y=0}^{y=7}
\]

\[
\int_{y=0}^{7} \left(4y^6 + 2y \sin y \right) \, dy
\]

\[
\frac{4y^7}{7} - \cos(9) \bigg|_{y=0}^{y=7}
\]

\[
4 \cdot 7 - \cos(9)
\]
Compute the Riemann sum for the given function and region, a partition with \(n \) equal-sized rectangles and the given evaluation rule.

\[f(x, y) = 11x^2 - 11y, \ 1 \leq x \leq 5, \ 0 \leq y \leq 1, \ n = 4, \ \text{evaluate at midpoint}. \]

Evaluate the iterated integral by first changing the order of integration.

\[
\int_0^4 \int_0^{\sqrt{20 + y^3}} \frac{1}{x} \, dy \, dx + \int_0^{\sqrt{4}} \int_0^{\sqrt{4}} \frac{1}{20 + y^3} \, dx \, dy + \int_0^{\sqrt{4}} \int_0^{\sqrt{4}} \frac{1}{20 + y^3} \, dx \, dy
\]
Project
Volume of Building

3D Printer update

bittnerh@mccc.edu

Do they work?