Technology in Action

Alan Evans • Kendall Martin
Mary Anne Poatsy

Tenth Edition
Chapter 10
Behind the Scenes:
Networking and Security in the Business World
Chapter Topics

• Client/Server Networks and Topologies
 – Basics of Client/Server Networks
 – Servers and Network Topologies
• Setting Up Business Networks
 – Transmission Media
 – Network Adapters and Network Navigation Devices
 – Network Operating Systems
 – Network Security for Client/Server Networks
Basics of Client/Server Networks

• A network is group of two or more computing devices (nodes)
• Share information and resources
 – Printers
 – Files
 – Databases
• Businesses gain advantages from deploying networks
Basics of Client/Server Networks

Networking Advantages

• Advantages businesses gain from networks
 – Enable sharing of expensive resources
 – Facilitate knowledge sharing
 • Serve needs of many people at one time
 • Increase availability of data
 – Enable sharing of software
 – Enable enhanced communication
Basics of Client/Server Networks

Networking Advantages

Benefits of Business Networks

Enable resource sharing
- Expensive peripherals, such as printers, can be shared
- Networks can share a single internet connection

Facilitate knowledge sharing
- Data can be accessed by multiple people

Enable software sharing
- Software can be delivered to client computers from a server

Enhance communication
- Information sharing is more effective when employees are connected
• Disadvantages to using networks
 – Additional personnel are usually required to maintain network
 • Network administrators
 • Trained in computer maintenance
 • Design networks
 • Install networking software
 – Requires special equipment and software
 – Cost savings and advantages outweigh cost and disadvantages
Where to find client/server networks

- Majority of computer networks are client/server
 - Server stores and shares resources on a network
 - Client requests resources
- Tasks can be handled centrally at the server
 - Backups of data files
 - Coordination of security
- Client/server is considered centralized
- Peer-to-peer (P2P) is decentralized
Basics of Client/Server Networks
Comparing Client/Server and Peer-to-Peer Networks (cont.)

• Why businesses use client/server networks
 – Makes data flow more efficiently than P2P
 – Responds to requests from large number of clients at the same time
 – Can be configured to perform specific tasks efficiently
 • E-mail
 • Database requests
Why P2P networks aren’t used more in business settings

- Difficult to administer beyond 10 users
- Inefficient with large number of computers
- Security can’t be implemented centrally
- Client computers are more efficient at processor-intensive tasks

- Viewing a video
- Accessing a database
• Making a client/server network different from a P2P network
 – Increased scalability
 • More users can be added easily
 • Doesn’t affect the performance of other nodes
 • Can be done without disrupting existing users
Basics of Client/Server Networks

Types of Client/Server Networks

• The most common types of client/server networks encountered in businesses
 – Local area network (LAN)
 • Small group of computers and peripherals
 • Relatively small geographic area
 – Wide area network (WAN)
 • Large number of users
 • Wider physical area
 • Separate LANs that are miles apart
Classifications of Client/Server Networks

<table>
<thead>
<tr>
<th>NETWORK TYPE</th>
<th>DESCRIPTION</th>
<th>WHERE USED IN BUSINESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAN (Personal Area Network)</td>
<td>Devices used by one person connected via wireless media</td>
<td>Usually by employees traveling on business</td>
</tr>
<tr>
<td>LAN (Local Area Network)</td>
<td>A network consisting of nodes covering a small geographic area</td>
<td>In small businesses or self-contained units of a large business (such as one or more floors of the same office building)</td>
</tr>
<tr>
<td>HAN (Home Area Network)</td>
<td>A type of small LAN installed in a home</td>
<td>Not usually deployed by businesses, except small home-based businesses</td>
</tr>
<tr>
<td>WAN (Wide Area Network)</td>
<td>Two or more LANs connected together, often over long distances</td>
<td>Connecting business LANs over long distances such as between branches in two cities</td>
</tr>
<tr>
<td>MAN (Metropolitan Area Network)</td>
<td>WANs constructed by municipalities to provide connectivity in a specific geographic area</td>
<td>Although not deployed by businesses, employees often use them while traveling</td>
</tr>
</tbody>
</table>
Basics of Client/Server Networks

Types of Client/Server Networks (cont.)

• Other networks businesses use
 – Intranet
 • Private network used exclusively by select group
 • Facilitate information sharing
 • Not accessible by unauthorized people
 – Extranet
 • Area of intranet with limited access
 • Useful for electronic data interchange (EDI)
 – EDI allows the exchange of large amounts of business data in a standardized electronic format
How Virtual Private Networks keep information secure on intranets and extranets

- Use public communications infrastructure to build a secure networks among locations
- Can used leased line, but these are expensive
- Use special security technologies and protocols to enhance security
- Requires special hardware and software
• How VPNs work using tunneling
 – Data packets are placed into other data packets
 – Encrypted so only understood by sending and receiving hardware (tunnel interface)
 – Hardware is optimized to seek efficient routes of transmission
 – Provides a high level of security
Basics of Client/Server Networks

Types of Client/Server Networks (cont.)
The key components of a client/server network

- Servers
- Network topologies
- Transmission media
- Network adapters
- Network navigation devices
- Network operating system
Basics of Client/Server Networks
Types of Client/Server Networks (cont.)
Servers

- Servers found on larger client/server networks
 - Dedicated server
 - Fulfill one specific function
 - Additional servers can be added to reduce load on main server
 - Can allow the original server to become a dedicated server
Servers (cont.)

- Functions dedicated servers handle
 - Repetitive tasks
 - Demand a lot of processor (CPU) time
- Common servers
 - Authentication servers
 - Print servers
 - Database servers
 - Communications servers
 - Cloud servers
 - File servers
 - Application servers
 - E-mail servers
 - Web servers
Servers (cont.)
Servers
Authentication and File Servers

• Authentication servers
 – Keep track of who is logging on to the network
 – Keep track of which services are available to each user
 – Act as overseers for the network
 – Manage and coordinate services provided by dedicated servers

• File servers
 – Store and manage files for network users
How a print server functions

- Manages all client-requested printing jobs
- Helps client computers be more productive by relieving them of printing duties
- Frees up the CPU on client computer to do other jobs
• How the printer knows which documents to print
 – Print queue (print spooler) is a holding area for print jobs
 – Each printer has its own named print queue
 – Print jobs receive a number and go to the printer in the order in which they were received
 – Queue can be set to prioritize jobs
Servers

Application Servers

• Functions an application server performs
 – Acts as a repository for application software
 – Delivers the software when a client computer makes a request
 – Eases installation and upgrading
 – Application is installed or upgraded only on application server
• What a database server does
 – Provides clients with information stored in databases
 – Makes it possible for many people to access the database at one time
 – Database resides only on the database server
Servers
E-Mail Servers

• How e-mail is handled on a large client/server network
 – Processes and delivers incoming and outgoing e-mail
 – Large volume could overwhelm a server that handled other tasks
 – Handles the routing and delivery of the message
Servers
Communications Servers

• Types of communications a communications server handle
 – Handles all communications between the network and other networks
 – Manages Internet connectivity
 – Has a heavy workload in most organizations
 – Only device connected to Internet
 – Providing a single point of contact makes it easier to secure network from hackers
• Functions of a web server
 – Hosts a website
 – Makes it available to the Internet
 – Runs specialized software
 • Apache HTTP Server
 • Microsoft Internet Information Services (IIS)
 – Many businesses use a hosting company instead
Cloud servers
- Not physically located at company office
- Maintained by hosting companies
- Connected to networks via the Internet
- Can be used for any type of server
- Can save money for small businesses
Network Topologies

• Physical or logical arrangement of
 – Computer
 – Transmission media (cable)
 – Other network components

• Physical: Layout of the “real” components of the network
Network Topologies (cont.)

• Logical: Virtual connections among network nodes
 – Determined by protocols instead of physical layout or paths that signals follow
Network Topologies (cont.)

• Network protocols
 – Sets of rules for exchanging information
 – Most common topologies are bus, ring, and star
 – Type of topology affects a network’s performance and scalability
Network Topologies

Bus Topology

• Why a bus topology
 – Bus (linear) topology
 • All computers are connected in sequence
 • Uses a single cable
 – Became legacy technology because of the advantages of star topology
 – Still found where groups of computer-controlled machines are connected
 – Each computer communicates directly with other computers on the network
Network Topologies
Bus Topology (cont.)

A cable break here cuts off Computer #1 and Computer #2 from the rest of the network.
Network Topologies

Bus Topology (cont.)

- Why a bus topology (cont.)
 - Data collisions happen when two computers send data at the same time
 - Causes lost or damaged data
 - Happens frequently in bus networks
 - Access method controls which computer is allowed to use the transmission media at a certain time
 - Taking turns sending data prevents data collisions
Network Topologies
Bus Topology (cont.)

• How data gets from point to point on a bus network
 – Data is broadcast to all devices on the network
 – Data is broken into small segments (packets)
 – Each packet contains the address of computer to which it is being sent
 – Each computer listens for data that has its address
Network Topologies

Bus Topology (cont.)

• How data gets from point to point on a bus network (cont.)
 – Passive topology – when each node does nothing to move data along
 – Terminators
 • Devices that absorb signals so they are not reflected back
 • Found on ends of cable
Network Topologies
Bus Topology (cont.)

• Advantages and disadvantages of bus networks
 – Advantages
 • Simplicity
 • Low cost
 – Disadvantages
 • If there is a break in cable, the network is disrupted
 • Adding a large number of nodes limits performance and causes delays
Network Topologies

Ring Topology

• What a ring topology looks like
 – Configuration resembles a circle
 – Data flows around the circle in one direction
 – Data is passed in special packets (tokens)
 – Once called token-ring topology
Network Topologies
Ring Topology (cont.)

STEP 1: The token travels around the ring until a computer needs to transmit data.

STEP 2: Computer #2 needs to print and grabs the token.

STEP 3: Computer #2 completes the transmission and releases the token.

STEP 4: A cable break stops movement of the token and data transmission.
Network Topologies
Ring Topology (cont.)

• How a token moves data around a ring
 – Token is passed until it is grabbed by a computer that needs to transmit data
 – Computer “holds” token until it is finished transmitting data
 – Only one computer can “hold” the token at a time
 – Token is taken out of circulation until data transmission is complete
Network Topologies
Ring Topology (cont.)

• How a token moves data around a ring (cont.)
 – Token Method
 • A new token is generated, which starts around the ring
 • Used to avoid data collision
 • Active topology: The nodes participate in moving the token
 • Each node is responsible to retransmit the token or data to next mode
 • Large networks use multiple tokens
Network Topologies
Ring Topology (cont.)

- Advantages of a ring topology
 - Provides a fairer allocation of network resources
 - Enables all nodes to have an equal chance to send data
 - Performance is acceptable even with large number of users
Disadvantages of a ring topology

- If one computer fails the entire network can fail.
- Problems in the ring can be hard to find.
- Adding a node causes ring to cease to function while node is being installed.
Network Topologies

Star Topology

• The layout of a star topology
 – Most widely deployed client/server topology
 – Offers the most flexibility for a low price
 – Nodes connect to a central communications device called a switch in a star pattern
 – Switch receives a signal and retransmits to the appropriate node
 – Each node only picks up transmissions addressed to it
Network Topologies
Star Topology (cont.)

• The layout of a star topology (cont.)
 – Active topology because switch retransmits data
 – If switch fails the network no longer functions
 – Relatively easy to replace a switch
Network Topologies

Star Topology (cont.)

A cable break here means Computer #1 cannot communicate with the network. However, all other computers and devices can still communicate with each other.
Network Topologies

Star Topology (cont.)

• How computers on a star network avoid data collisions
 – Most use Ethernet networks
 – Use CSMA/CD (carrier sense multiple access with collision detection)
• Nodes use carrier sense (it “listens”) to verify that no nodes are transmitting data
 – All nodes have same right to transmit data
 – If two devices begin to transmit, the signals will collide
Network Topologies
Star Topology (cont.)

• What happens when signals collide
 – A node detects the collision
 – A jam signal is sent to all nodes alerting them of collision
 – Original nodes stop transmitting
 – After random amount of time the nodes try transmitting again
Network Topologies
Star Topology (cont.)

STEP 1: Nodes 1 and 2 transmit data at the same time.

Data collision

STEP 2: Node 3 detects a data collision and sends a jam signal.

STEP 3: Node 2 retransmits its data after waiting a random interval.
Network Topologies
Star Topology (cont.)

• Advantages of star topology
 – Failure of one computer doesn’t affect rest of network
 – Easy to add nodes
 – Performance remains acceptable even with large number of nodes
 – Centralized communications makes troubleshooting and repairs easier
Network Topologies
Star Topology (cont.)

• Disadvantage of star topology
 – Cost
Network Topologies
Comparing Topologies

- Best topology
 - Star topology is the most common
 - New users being added constantly
 - Installing an additional switch without affecting other users is deciding factor
 - Bus topology is all but extinct
 - Star topology is used in most home networks
 - Ring topology is popular where fair allocation is a major requirement
Advantages and Disadvantages of Bus, Ring, and Star Topologies

<table>
<thead>
<tr>
<th>TOPOLOGY</th>
<th>ADVANTAGES</th>
<th>DISADVANTAGES</th>
</tr>
</thead>
</table>
| Bus | - Uses a minimal amount of cable.
 - Installation is easy, reliable, and inexpensive. | - Breaks in the cable can disable the network.
 - Large numbers of users decrease performance because of high volumes of data traffic. |
| Ring | - Allocates access to the network fairly.
 - Performance remains acceptable even with many users. | - Adding/removing nodes disables the network.
 - Failure of one node can bring down the network.
 - Problems in data transmission can be difficult to find. |
| Star | - Failure of one node doesn’t affect other nodes on the network.
 - Centralized design simplifies troubleshooting and repairs.
 - High scalability: Adding computers is easy.
 - Performance remains acceptable even with many users. | - Requires more cable (and possibly higher installation costs) than a bus or ring topology.
 - The switch is a single point of failure; if it fails, all computers connected to it are affected. |
Topologies can be combined within a single network

- Topologies are often combined to benefit from the unique advantages of each
- Known as a hybrid topology
Transmission Media

• Transmission media
 – Comprises the physical system that data takes to flow between devices on the network
 – Required or network devices would be unable to communicate
 – Most corporate networks use a combination of wired and wireless media
• Why wired connections are used in business networks
 – Provide higher throughput and better security
 – Desktop computers are still popular choices because of power and speed
 – Permanence of desktop installation lends itself to wired connection
Transmission Media
Wired Transmission Media (cont.)

• Important factors in choosing a cable type
 – Three main cable types
 • Twisted-pair
 • Coaxial
 • Fiber-optic
• Important factors in choosing a cable type (cont.)
 – Six factors need to be considered
 • Maximum run length
 • Bandwidth
 • Bend radius (flexibility)
 • Cable cost
 • Installation cost
 • Interference
Wired Transmission Media (cont.)

- Causes of interference with data signals
 - Electromagnetic interference (EMI)
 - Caused when cable is exposed to strong electromagnetic fields
 - Can distort signals
 - Fluorescent lights, motors, and transformers are most common sources
Transmission Media

Wired Transmission Media (cont.)

• Causes of interference with data signals (cont.)
 – Radio frequency interference (RFI)
 – Broadcast sources located near network
 – Fiber-optic cable is virtually immune to interference
Transmission Media
Twisted-Pair Cable

• Why the wires in twisted-pair cable are twisted
 – Cause the magnetic fields around the wires to intermingle, making them less susceptible
 – Reduce the amount of crosstalk (tendency for signals to interfere with signals next to it)
Transmission Media
Twisted-Pair Cable

• Why the wires in twisted-pair cable are twisted (cont.)
 – Shielded twisted-pair (STP) has a foil shielding
 – Unshielded twisted-pair (UTP) is more susceptible to interference
 – Because of lower cost UTP is most often used
Transmission Media
Twisted-Pair Cable (cont.)

- Twisted pairs of copper wires
- Protective sheath
- Twisted pairs of copper wires
- Protective sheath
- Foil shielding
Coaxial cable in business networks
- Not as popular, but still used when there is heavy electrical interference
Transmission Media
Coaxial Cable (cont.)

• Coaxial cable in business networks (cont.)
 – Four main components of coax cable
 • Core (usually copper) in the center - used for transmitting signal
 • Solid layer of nonconductive insulating material (usually a hard, thick plastic) surrounds the core
 • Layer of braided metal shielding covers the insulation to reduce interference with signals
 • External jacket covers the internal cable components to protect them from damage
What fiber-optic cable looks like

- Three major components
 - Glass (or plastic) fiber (or bundle of fibers) through which data is transmitted
 - Protective layer of glass or plastic wrapped around core to protect it
 - Outer jacket (sheath) made of durable material

- Transmission passes in only one direction, so most cables have at least two fibers (cores)
Transmission Media
Fiber-Optic Cable (cont.)

- Protective sheath
- Glass or plastic cladding
- Optical glass fiber
Transmission Media
Wireless Media Options

- Wireless media options
 - Most businesses use the same Ethernet standards as home networks
 - Wireless access points provide coverage wherever portable devices will be used
 - Example: Conference rooms
Transmission Media
Comparing Transmission Media

• Best medium for business networks
 – Network engineers are responsible for selecting the appropriate topologies and media
 • Topology to be used
 • Length of cable runs
 • Amount of interference
 • Need for wireless connectivity
 – Most use a mix of media types
Network Adapters

• Network adapters
 – Devices that perform specific tasks
 – Enable nodes to communicate on a network
 – Installed inside computers and peripherals
 – Referred to as network interface cards (NICs)
Network Adapters (cont.)

• What network adapters do
 – Generate high-powered signals to enable network transmissions
 • Signals in the computer are low powered
 • Network adapters convert those to higher powered
 – Break the data into packets and transmit and receive data
 • Reconstruct received packets
 – Act as gatekeepers for information flowing to and from the client computer
Network Adapters (cont.)

STEP 1: You request information from the network database.

STEP 2: The NIC breaks the request into packets and sends the packets to the server.

Network interface card (NIC)

STEP 3: The server executes the request, assembles the response into packets, and sends the packets to the client.

STEP 4: The NIC reassembles the response packets and displays information on your screen.

Request packet #1

Request packet #2

Request packet #3

Response packet #1

Response packet #2

Response packet #2

Server
Network Adapters (cont.)

- Different types of network adapters
 - Ethernet is the standard protocol in client/server networks
 - Adapter cards shipped in computers are Ethernet compliant
Network Adapters (cont.)

• Wireless network adapters
 – Any device that connects using wireless access must have a wireless network interface card (wireless NIC)
 – Laptops and other portable devices have a wireless NIC built in
 – Network must have wireless access point (WAP) which gives devices a sending and receiving connection to the network
Network Adapters (cont.)

• Software for network adapters
 – Communications software called device drivers must be installed on all client computers
 – Device drivers enable the network adapter to communicate with the server’s operating system (OS) and computer’s OS
Network Navigation Devices

- Data flows through network in packets
- Data needs help getting to its destination
Network Navigation Devices
MAC Addresses

• How network adapters know where to send data packets
 – Network adapters have a physical address, called a media access control (MAC) address
 • Made up of six two-position characters
 • First three sets indicate the manufacturer
 • Second three sets make up a unique address
Network Navigation Devices
MAC Addresses

• How network adapters know where to send data packets (cont.)
 – Institute of Electrical and Electronics Engineers (IEEE) allocates unique MAC addresses
MAC addresses are not the same as IP addresses

- MAC address is used internally on a network
- Internet Protocol (IP) address is the external address used to communicate with network
- Both addresses are necessary for data to reach its destination
• How data packets are packaged for transmission
 – Packets are not necessarily sent alone
 – A frame is a container for groups of packets which are sent together
 – Network operating system (NOS) assigns the MAC address to the frame
 – NOS keeps track of all devices and their addresses
Network Navigation Devices

MAC Addresses (cont.)

• Delivering the frames to the correct device on the network
 – Small bus network
 • Frames move along the network until the correct client computer pulls the signal off the medium
 – Larger network
 • Not efficient for larger networks
 – Other devices
 • Developed to deliver data efficiently
 • Designed to route signals and exchange data
Other uses of MAC addresses

– Can be used to enhance wireless network security

– A list of authorized MAC addresses can be stored in the router
Network Navigation Devices
Switches and Bridges

• Devices which are used to route signals through a single network
 – Switches send data on a specific route through the network
 – Switch makes decisions using the MAC address to determine where to rebroadcast data
 – Improves network efficiency by ensuring that node only receives data intended for it
Network Navigation Devices
Switches and Bridges (cont.)
• Necessity of a switch in networks
 – All Ethernet networks need a switch
 • Home
 • Business
 – Routers used at home have switches built into them
Network Navigation Devices
Switches and Bridges (cont.)

• Switches are not sufficient for moving data efficiently across networks of all sizes
 – As network grows, performance can decline
 – Network can be broken into segments known as collision domains
 – Bridge is used to send data between collision domains
 – Most home networks only have one segment so a bridge is not necessary
Network Navigation Devices

Routers

• Device a network uses to move data to another network
 – Router is designed to send information between two networks
 – Looks at higher level network addresses
 • IP addresses
 • Not MAC addresses
 – When data address is not on network it sends data to another network or Internet
Network Operating Systems

• Connecting computers together doesn’t create a client/server network
• Network operating system (NOS) is needed
 – Installed on each client and server on network
 – Provides services necessary for communication
 – Provides common rules (protocols) that controls communication
Network Operating Systems (cont.)

• Modern operating systems include NOS as part of their installation
• Large networks require sophisticated NOS software
Network Operating Systems (cont.)

Why a NOS is needed on large networks

- Facilitates communication between software and hardware
- Designed to provide server services
 - Network communications
 - Management of network peripherals
 - Storage
- Client computers must run a small part of NOS
Network Operating Systems (cont.)

• P2P networks need special NOS software
 – Required software is built into Windows, Linux, and Macintosh OS
 – Simple P2P: No need for specialized NOS software
• How the NOS controls network communications
 – Each NOS has proprietary
 • Communications language
 • File management structure
 • Device management structure
 – Sets and controls protocols for all devices
 – Internet uses open protocol (TCP/IP)
 – Modern NOSs support TCP/IP
Using two different NOSs

- Many large corporate networks use several NOSs at the same time
- Different NOSs provide different features
- More useful in certain situations
Network Security for Client/Server Networks

- Sources of security threats all network administrators need to watch for
 - Human errors and mistakes
 - Malicious human activity
 - Natural events and disasters
Network Security for Client/Server Networks

Authentication

• How network administrators ensure that only authorized users access the network
 – Authentication is the process of approving which users can use a network
 • IDs and passwords
 • Biometric devices
 • Possessed objects (an object users carry to identify themselves)
How hackers can use my account to log in to the network

- If ID and password is known you can be impersonated
- If you fail to log out someone else can use your account
How hackers can use my account to log in to the network (cont.)

– User IDs can be easy to figure out
– Brute force attack is the attempt to access an account by repeatedly trying different passwords
– Administrators configure accounts to disable themselves after a set number of invalid login attempts
Access Privileges

• How I can gain access to everything on a network
 – You can’t!
 – Access privileges are granted when your account is set up
 – Indicates which systems you are allowed to use
• How restricting access privileges protects a network
 – Administrator grants access only to systems and software a user needs
 – Centralized nature of network access and ability to restrict access makes client/server more secure than P2P network
• How data theft and destruction occurs
 – Portable devices pose several threats
 • Easily stolen
 • Large memory capacity so many documents can be stored
 • Can introduce viruses
• How network administrators should protect their networks from portable storage devices
 – Educate employees about dangers
 – Create policies regulating use
 – Install security measures such as firewalls
 – Limit and monitor use
• How network administrators should protect their networks from portable storage devices
 – Inform employees that devices are being monitored
 – Deploy monitoring software
Physical Protection Measures

- Physical measures used to protect a network
 - Restrict physical access to sensitive equipment
 - Access card reader reads information from a magnetic strip
 - Card readers are programmed for authorized ID numbers
Network Security for Client/Server Networks
Physical Protection Measures (cont.)
Physical measures used to protect a network (cont.)

- Biometric authentication devices use unique characteristic of human biology to identify users
- Fingerprints (palm prints), retina scanner
• Problems with biometric devices
 – Don’t always function as intended
 • Fooled by pictures or videos of authorized user
 • Fooled by clay fingers or other imitations
 – Future fingerprint readers will use algorithms to detect moisture or electrical current
 – Future retinal readers might check for blinks or whether pupils contract
• Internet connections on client/server networks are vulnerable to hackers
 – Any company’s network connected to Internet can attract hackers
 – Any well-defended network includes a firewall
 – Firewalls can be software or hardware based
 – Routers often equipped to act as hardware firewalls
How a firewall on a client/server network works compared to the personal firewall installed on a home network

- Works on same basic principles
- Contains a few extra security options
- Packet screening has an external screening router examine incoming data packets
• How a firewall on a client/server network works compared to the personal firewall installed on a home network (cont.)
 – Unauthorized or suspect packets are discarded
 – Internal screening router detects Trojan horse programs
Network Security for Client/Server Networks
Firewalls (cont.)

• Other security measures the firewall on a client/server network uses
 – Bastion host: A heavily secured server on a perimeter network
 • Between secure internal network and firewall
 – Internal network is still safe if hacker breaches bastion host
 – Gives network administrators time to detect and thwart hackers’ attacks
Network Security for Client/Server Networks

Firewalls (cont.)

- How bastion hosts help protect systems from hackers
 - Honey pot
 - Computer set up to attract unauthorized users
 - Appears to be a key part of network
 - Pretends to contain something of great value
• How bastion hosts help protect systems from hackers
 – Proxy server: Acts as a go-between connecting internal computers with external network
• All requests goes through proxy server
Chapter 12 Summary Questions

1. What are the advantages of a Business network?
2. How does a client/server network differ from a peer-to-peer network?
3. What are the different classifications of client/server networks?
4. What components are needed to construct a client/server network?
Chapter 12 Summary Questions

5. What do the various types of servers do?
6. What are the various network topologies, and why is network topology important in planning a network?
7. What types of transmission media are used in client/server networks?
8. How do network adapters enable computers to participate in a client/server network?
9. What devices assist in moving data around a client/server network?
10. What software needs to run on computers attached to a client/server network, and how does this software control network communications?
11. What measures are employed to keep large networks secure?