ANSWERS TO MULTIPLE CHOICE QUESTIONS

6. When the potential across the device is 2 V, the current is 2 A, so the resistance is
 \[R = \frac{\Delta V}{I} = \frac{2 \text{ V}}{2 \text{ A}} = 1 \text{ } \Omega \text{, and (a) is the correct choice.} \]

7. The power consumption of the set is
 \[P = (\Delta V)I = (120 \text{ V})(2.5 \text{ A}) = 3.0 \times 10^2 \text{ W} = 0.30 \text{ kW}. \]
 Thus, the energy used in 8.0 h of operation is
 \[E = P \cdot t = (0.30 \text{ kW})(8.0 \text{ h}) = 2.4 \text{ kWh}, \]
 at a cost of
 \[\text{cost} = \left(2.4 \text{ kWh} \right)(8.0 \text{ cents/kWh}) = 19 \text{ cents}. \]
 The correct choice is (c).

9. When the potential difference across the device is 3.0 V, the current is 2.5 A, so the resistance is
 \[R = \frac{\Delta V}{I} = \frac{3.0 \text{ V}}{2.5 \text{ A}} = 1.2 \text{ } \Omega , \text{ and (b) is the correct choice.} \]

10. Resistors in a parallel combination all have the same potential difference across them. Thus, from
 Ohm’s law, \(I = \frac{\Delta V}{R} \), the resistor with the smallest resistance carries the largest current. Choice
 (a) is the correct response.

11. The current through the resistor is
 \[I = \frac{\Delta V}{R} = 1.0 \text{ V/10.0 } \Omega = 0.10 \text{ A}, \text{ and the charge passing} \]
 through in a 20 s interval is
 \[\Delta Q = I \cdot \Delta t = (0.10 \text{ C/s})(20 \text{ s}) = 2.0 \text{ C}. \text{ Thus, (c) is the correct choice.} \]

12. Resistors in a series combination all carry the same current. Thus, from Ohm’s law, \(\Delta V = IR \), the
 resistor with the highest resistance has the greatest voltage drop across it. Choice (c) is the correct
 response.

13. \[\frac{P_a}{P_b} = \frac{(\Delta V)^2 / R_a}{(\Delta V)^2 / R_b} = \frac{R_b}{R_a} = \frac{\rho L_b / \pi d_b^2}{\rho L_a / \pi d_a^2} = \frac{L_b}{L_a} \left(\frac{d_a}{d_b} \right)^2 = \left(\frac{1}{2} \right)^2 = 2 \]
 Thus, \(P_a / P_b = 2 \), and the correct choice is (c).

ANSWERS TO EVEN NUMBERED CONCEPTUAL QUESTIONS

6. (a) The 25 W bulb has the higher resistance. Because \(R = \frac{(\Delta V)^2}{P} \), and both operate from
 120 V, the bulb dissipating the least power has the higher resistance.

 (b) When the voltage is constant, the current and power are directly proportional to each other,
 \(P \propto (\Delta V)I \propto (\text{constant})I \). Thus, the higher power bulb (100 W) carries more current.

8. An electrical shock occurs when your body serves as a conductor between two points having a
 difference in potential. The concept behind the admonition is to avoid simultaneously touching
 points that are at different potentials.

10. The knob is connected to a variable resistor. As you increase the magnitude of the resistance in
 the circuit, the current is reduced, and the bulb dims.

PROBLEM SOLUTIONS

17.11 \[(\Delta V)_{\text{max}} = I_{\text{max}} R = (80 \times 10^{-4} \text{ A})R \]

17.15 (a) \[R = \frac{\Delta V}{I} = \frac{12 \text{ V}}{0 \Delta \Omega \lambda} = 30 \text{ } \Omega \]

17.25 The volume of the gold wire may be written as \(V = A \cdot L = m / \rho \), where \(\rho \) is the density of gold.
Thus, the cross-sectional area is \(A = m / \rho L \). The resistance of the wire is \(R = \rho L / A \), where \(\rho \) is
the electrical resistivity. Therefore,

\[R = \frac{\rho L}{m / \rho L} = \rho \left(\frac{L}{m} \right)^2 \left(\frac{2.44 \times 10^{-8} \text{ } \Omega \cdot \text{m}}{(19.3 \times 10^3 \text{ kg/m}^3)(2.40 \times 10^3 \text{ m})} \right) \left(\frac{1.00 \times 10^{-3} \text{ kg}}{m} \right) \]

giving \[R = 2.71 \times 10^6 \text{ } \Omega = 2.71 \text{ M} \Omega \]
17.33 (a) The power consumed by the device is \(P = I (\Delta V) \), so the current must be
\[
I = \frac{P}{\Delta V} = \frac{1.00 \times 10^3 \text{ W}}{1.20 \times 10^2 \text{ V}} = 8.33 \text{ A}
\]
(b) From Ohm’s law, the resistance is
\[
R = \frac{\Delta V}{I} = \frac{1.20 \times 10^2 \text{ V}}{8.33 \text{ A}} = 14.4 \text{ Ω}
\]

17.35 (a) \(R_{cs} = \frac{\rho L}{A} = \frac{4 \rho L}{\pi d^2} = \frac{4(1.7 \times 10^{-8} \text{ Ω} \cdot \text{m})(1.00 \text{ m})}{\pi (0.205 \times 10^{-2} \text{ m})^2} = 5.2 \times 10^{-3} \text{ Ω} \)

and \(P_{cs} = I^2 R_{cs} = (20.0 \text{ A})^2 (5.2 \times 10^{-3} \text{ Ω}) = 2.1 \text{ W} \)

(b) \(R_{Al} = \frac{\rho L}{A} = \frac{4 \rho L}{\pi d^2} = \frac{4(2.82 \times 10^{-8} \text{ Ω} \cdot \text{m})(1.00 \text{ m})}{\pi (0.205 \times 10^{-2} \text{ m})^2} = 8.54 \times 10^{-3} \text{ Ω} \)

and \(P_{Al} = I^2 R_{Al} = (20.0 \text{ A})^2 (8.54 \times 10^{-3} \text{ Ω}) = 3.42 \text{ W} \)

(c) \[\text{As the aluminum wire would not be as safe. If surrounded by thermal insulation, it would get much hotter than the copper wire.}\]

17.37 The energy required to bring the water to the boiling point is
\[
E = mc(\Delta T) = (0.500 \text{ kg})(4186 \text{ J/kg} \cdot ^{\circ}\text{C})(100^\circ\text{C} - 23^\circ\text{C}) = 1.61 \times 10^3 \text{ J}
\]

The power input by the heating element is
\[
P_{\text{input}} = (\Delta V)I = (120 \text{ V})(2.00 \text{ A}) = 240 \text{ W} = 240 \text{ J/s}
\]

Therefore, the time required is
\[
t = \frac{E}{P_{\text{input}}} = \frac{1.61 \times 10^3 \text{ J}}{240 \text{ J/s}} = 671 \text{ s} = 11.2 \text{ min}
\]

17.39 (a) \(R_{x} = \frac{(\Delta V)^2}{P_{x}} = \frac{(120 \text{ V})^2}{25.0 \text{ W}} = 576 \text{ Ω} \)

and \(R_{y} = \frac{(\Delta V)^2}{P_{y}} = \frac{(120 \text{ V})^2}{100 \text{ W}} = 144 \text{ Ω} \)

(b) \(\Delta t = \frac{Q}{I_{x}} = Q \left(\frac{R_{x}}{\Delta V} \right) = (1.00 \text{ C}) \left(\frac{576 \text{ Ω}}{120 \text{ V}} \right) = 4.80 \text{ s} \)

(c) The charge is the same. However, as it leaves the bulb, it is at a lower potential than when it entered the bulb.

(d) \(P = \frac{W}{\Delta t} \) so \(\Delta t = \frac{W}{P_{x}} = \frac{1.00 \text{ J}}{25.0 \text{ J/s}} = 0.400 \text{ s} \)

(e) Energy enters the bulb by electrical transmission and leaves by heat and radiation.

(f) \(E = P_{x}(\Delta t) = \left(\frac{1 \text{ kW}}{10^3 \text{ W}} \right) \left(30.0 \text{ d} \right) \left(\frac{24.0 \text{ h}}{1 \text{ d}} \right) = 18.0 \text{ kWh} \)

and \(\text{cost} = E \times \text{rate} = (18.0 \text{ kWh})(0.110$/\text{kWh}) = \$1.98 \)
17.43 \[P = (\Delta V)I = \left(75.0 \times 10^{-3} \text{ V}\right)\left(0.200 \times 10^{-3} \text{ A}\right) = 1.50 \times 10^{-5} \text{ W} = 15.0 \mu\text{W} \]

17.45 Total length of transmission lines: \(L = 2(50.0 \text{ m}) = 100 \text{ m} \). Thus, the resistance of these lines is \(R = \frac{0.108 \text{ \Omega}}{300 \text{ m}}(100 \text{ m}) = 3.60 \times 10^{-2} \text{ \Omega} \).

(a) The total potential drop along the transmission lines is \((\Delta V)_{\text{total}} - IR \), giving

\[(\Delta V)_{\text{total}} - (\Delta V)_{\text{meas}} = 120 \text{ V} - (110 \text{ A})(3.60 \times 10^{-2} \text{ \Omega}) = 116 \text{ V} \]

(b) \(P_{\text{actual}} = I(\Delta V)_{\text{meas}} = (110 \text{ A})(116 \text{ V}) = 1.28 \times 10^4 \text{ W} = 12.8 \text{ kW} \)

17.47

The power dissipated in a conductor is \(P = \frac{(\Delta V)^2}{R} \), so the resistance may be written as \(R = \frac{(\Delta V)^2}{P} \). Hence,

\[\frac{R_2}{R_1} = \frac{P_1}{P_2} = \frac{P_1}{P_1} = \frac{3}{1} \quad \text{or} \quad R_2 = 3R_1 \]

Since \(R = \frac{\rho L}{A} = \frac{\rho L}{\pi d^2/4} \), this result becomes

\[\frac{3\rho L}{\pi d_2^2} = \frac{3\rho L}{\pi d_1^2} \quad \text{or} \quad \frac{d_1^2}{d_2^2} = 3 \]

and yields \(d_1/d_2 = \sqrt{3} \)