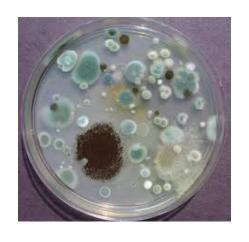
BIO 201 Lab 2 Experiment 3

Professor Diane Hilker

Overview

- Exp. 3: Collection of Microbes
 - 1. Observe different types of Microbial Colonies
 - 2. Identification of Molds
 - 3. Isolation of Bacteria


Overview

- Exp. 3: Collection of Microbes
 - 1. Observe different types of Microbial Colonies
 - 2. Identification of Molds
 - 3. Isolation of Bacteria

1. Microbial Colonies

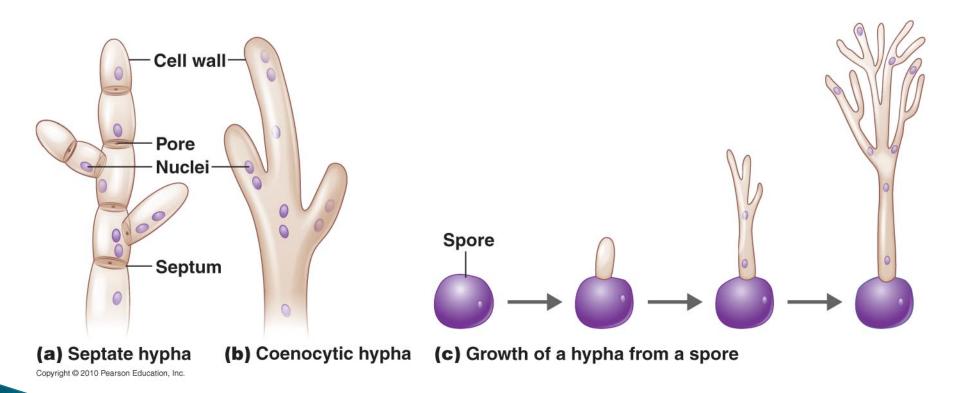
- Colony: a visible mass of microbial cells originating from one cell.
- (3) Types
 - Large, fuzzy, hairy, 3D, growing upward & touching the lid, various colors-MOLD
 - Small, creamy, moist, circular, various colors-BACTERIA
 - Medium, dry, crusty, white-beige-YEAST

1. Microbial Colonies

Mold Colonies

Bacterial Colonies Yeast Colonies

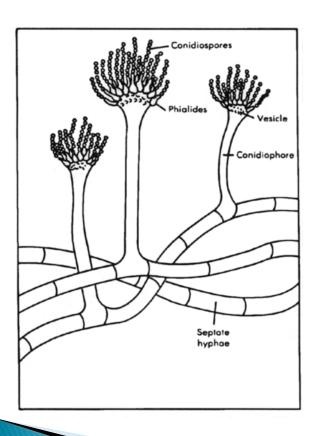
- Culture Media Used
 - Potato Dextrose Agar (PDA)
 - Supports mainly mold growth
 - pH 5.2-acidic
 - High in carbohydrates
 - Nutrient Agar (NA)
 - Supports mainly bacterial growth
 - pH 7.0-neutral
 - High in proteins


Overview

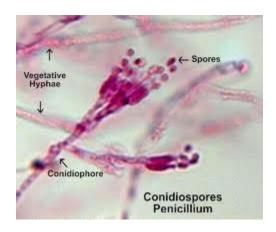
- Exp. 3: Collection of Microbes
 - 1. Observe different types of Microbial Colonies
 - 2. Identification of Molds
 - 4. Isolation of Bacteria

- Molds
 - Vegetative Structures: obtain nutrients
 - Absorb nutrients through cell wall
 - Can't identify a mold based on vegetative structure

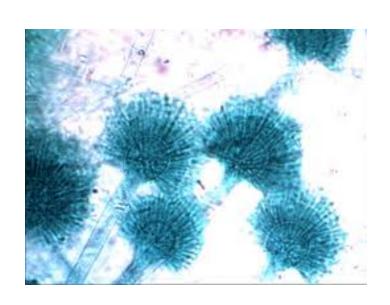
- Thallus: body of mold consisting of filaments
- Hyphae or hypha: filaments-multicellular
 - Can be very long; elongate at the tips
- Septa or septum: cross-walls
- Coenocytic hyphae: no cross-walls
- Mycelium: filamentous mass visible to the eye

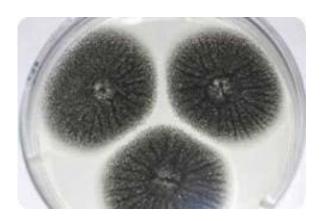

Fig. 12.2 Textbook




- Molds-Reproductive Structures: Spores
 - Molds identified based on type of spores
 - 2 Types of Spores:
 - Sexual Spores: genetic exchange between 2 parents (meiosis)
 - Not as common in nature
 - To be discussed in lecture
 - Asexual Spores: no genetic exchange (mitosis)
 - More common in nature
 - To be discussed in lab

- Asexual Spores: 2 Types
 - I. Conidiospores or conidia: 2 types based on size of spore
 - 1. Microconidia
 - Conidiophore: supporting structure
 - Holds conidia
 - Examples: Penicillium sp. and Aspergillus sp.


Penicillium sp.

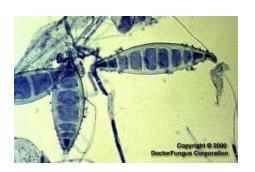


Aspergillus sp.

- Asexual Spores: 2 Types
 - I. Conidiospores or conidia: 2 types based on size of spore
 - 2. Macroconidia: much larger than microconidia
 - Examples: Alternaria, Stemphyllium, Stachybotrys, Curvulvaria, Fusarium, and Microsporum

Macroconidia

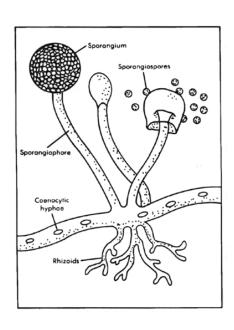
Alternaria Curvulvaria


Stemphyllium

Fusarium

Microsporum

Macroconidia Stachybotrys





- Asexual Spores: 2 Types
 - II. Sporangiospores
 - Sporangium: sac
 - Sporangiophore: supporting structure
 - Holds sporangiospores
 - · Examples: Rhizopus sp. and Mucor sp.

Rhizopus sp. and Mucor sp.

- How to make a slide under a Biological Safety Cabinet (BSC)
 - Choose a sporulating mold colony
 - Place 2 drops of ethanol on slide
 - Aseptically remove a small but visible piece of the mold using acceptable tools
 - Add 1 drop of Lactophenol Cotton Blue
 - Cover with cover slip
 - Observe under Scan (dim light), Low and High Power if needed

- Observing Prepared Slides
 - Observe prepared mold slides using Scan, Low and High Powers
 - Rhizopus sp. –sporangiospores
 - Penicillium sp. condiospores (microconidia)
 - Aspergillus sp. condiospores (microconidia)
 - Observe hyphae
 - Can you tell the difference between sporangiospores and condiospores?

Overview

- Exp. 3: Collection of Microbes
 - 1. Observe different types of Microbial Colonies
 - 2. Identification of Molds
 - 3. Isolation of Bacteria

- Isolation of Bacteria
 - Pure Culture: 1 type of microbe; to get alone
 - Procedure called Streaking or Streaking for Isolation
 - T-Streak Method: to separate individual colonies

