BIO 201 Lab 1
Experiments 1, 2, 3

Professor Diane Hilker
Overview

I. Exp. 1: Introduction to the Microscope
II. Exp. 2: Survey of Microbes
III. Exp. 3: Collection of Microbes
I. Exp. 1: Intro. to the Microscope

- **Purpose:** To review the use & care of the compound light microscope

Fig. 3.1 Textbook
I. Exp. 1: Intro. to the Microscope

- Compound Binocular Light Microscope
 - (2) Sources of Magnification:
 - Eyepiece or Ocular (10x)
 - Objectives (4):
 - Scanning Power: 4x
 - Low Power: 10x
 - High Power: 40x
 - Oil Immersion: 100x
 - Parfocal: ability to go from one objective to another with minimal focusing
I. Exp. 1: Intro. to the Microscope

- Total Magnification: TM
 - TM = Magnification of Eyepiece × Magnification of Objective

<table>
<thead>
<tr>
<th></th>
<th>Eyepiece Magnification</th>
<th>Objective Magnification</th>
<th>TM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scanning</td>
<td>10X</td>
<td>4X</td>
<td>40X</td>
</tr>
<tr>
<td>Low</td>
<td>10X</td>
<td>10X</td>
<td>100X</td>
</tr>
<tr>
<td>High Dry</td>
<td>10X</td>
<td>40X</td>
<td>400X</td>
</tr>
<tr>
<td>Oil Immersion</td>
<td>10X</td>
<td>100X</td>
<td>1000X</td>
</tr>
</tbody>
</table>
I. Exp. 1: Intro. to the Microscope

- Resolution or Resolving Power (RP)
 - Ability to distinguish detail clearly
 - To be able to tell 2 points as separate points and not one point

- \[RP = \frac{\text{Wavelength of Light}}{2 \times \text{Numerical Aperture}} = \frac{\lambda}{2\text{NA}} \]
I. Exp. 1: Intro. to the Microscope

- Wavelength of light (nm)
 Red light = 700 nm
 Blue light = 400 nm

- \[\text{RP}_{\text{red}} = \frac{700 \text{ nm}}{2(1)} = 350 \text{ nm} \]
- \[\text{RP}_{\text{blue}} = \frac{400 \text{ nm}}{2(1)} = 200 \text{ nm} \]

- Lower the resolution, better the clarity
- Blue filter provides the best resolution with a halogen light bulb
- Blue filter NOT needed with microscopes that have a LED light bulb
Numerical Aperture (NA): describes the cone of light that enters the lens so as to see fine detail. Two things make up NA:

- **Angular Aperture**: angle of light as it goes through the lenses & filters of the condenser & into the objective (Constant)
- **Refractive Index**: how light travels through a medium
 - Refractive Index of Air = 1.0
 - Refractive Index of Oil = 1.5
I. Exp. 1: Intro. to the Microscope

- \(R_{\text{air}} = \frac{400 \text{ nm}}{2(1.0)} = 200 \text{ nm} \)
- \(R_{\text{oil}} = \frac{400 \text{ nm}}{2(1.5)} = 133 \text{ nm} \)

- Better resolution with oil
Overview

I. Exp. 1: Introduction to the Microscope

II. Exp. 2: Survey of Microbes

III. Exp. 3: Collection of Microbes
II. Exp. 2: Survey of Microbes

Purpose: To become familiar with using a microscope & to view various microbes

- **Wet Mount:** observing living cells
 - Focus on edge of coverslip
 - Scanning–dim light using diaphragm
 - Move toward center of slide
 - Observe under Low & High Powers
 - Slides will dry out quickly
II. Exp. 2: Survey of Microbes

4 Slides: Largest to smallest microorganisms

1. Pond Water: algae—much variation
II. Exp. 2: Survey of Microbes

2. Protozoa: single celled eukaryotic microbes that move by different methods that belong to the Protista kingdom.

- **Pseudopods**: false feet
 - Amoeba

- **Cilia**
 - Paramecium

- **Flagella**
 - Euglena
3. **Yeast**: single celled eukaryotic microbes that belong to the Fungi kingdom

- Ovoid & irregular
- Budding: method of reproduction
- Brownian movement
- Smaller than protozoa
- Larger than bacteria
II. Exp. 2: Survey of Microbes

4. Bacteria (Hay infusion): single celled prokaryotic microbes that belong to the Monera kingdom.
 - Must view under 400x
 - Very small
 - Motile & non-motile
 - Looks like specks of sand
 - Hard to discern shape
 - Smaller than yeast and protozoa
 - Protozoa may be present in the sample
Overview

I. Exp. 1: Introduction to the Microscope

II. Exp. 2: Survey of Microbes

III. Exp. 3: Collection of Microbes
III. Exp. 3: Collection of Microbes

- **Purpose:** To collect and grow microbes from the environment for observation
 - Procedure to be described by lab instructor