1. Write the following as an inequality.

-6 is less than x, and

9 is greater than or equal to x

Use x only once in your inequality.

2. Write the following as an inequality.

0 is less than or equal to x, and

6 is greater than or equal to x

Use x only once in your inequality.

3. Graph the compound inequality on the number line.

$x \leq -5$ or $x > 8$
4. Graph the compound inequality on the number line.

\[x > -4 \text{ and } x \leq 1 \]

5. Write a compound inequality for the graph shown below.
Use \(x \) for your variable.

6. Write a compound inequality for the graph shown below.
Use \(x \) for your variable.

7. The sets \(E \) and \(F \) are defined as follows.

\[E = \{ x | x \leq 2 \} \]
\[F = \{ x | x > 8 \} \]

Write \(E \cap F \) and \(E \cup F \) using interval notation.
If the set is empty, write \(\emptyset \).
8. The sets D and E are defined as follows.

$D = \{v \mid v < 3\}$

$E = \{v \mid v \leq 5\}$

Write $D \cup E$ and $D \cap E$ using interval notation.
If the set is empty, write \emptyset.

9. Solve the compound inequality.

$4x + 2 \geq -10$ and $3x - 4 < 8$

Graph the solution on the number line.

10. Solve the compound inequality.

$-12 \leq 4x + 4 < 16$

Graph the solution on the number line.
11. Solve the compound inequality.

\[4v - 3 < -23 \quad \text{and} \quad 2v + 2 \leq 14 \]

Write the solution in interval notation.
If there is no solution, enter \(\emptyset \).

12. Solve the compound inequality.

\[2w - 3 \leq 5 \quad \text{or} \quad 4w - 6 < -10 \]

Write the solution in interval notation.
If there is no solution, enter \(\emptyset \).
1. $-6 < x \leq 9$

2. $0 \leq x \leq 6$

3. [Graph showing the interval $-6 < x \leq 9$]

4. [Graph showing the interval $0 \leq x \leq 6$]

5. $-5 \leq x < 7$

6. $x < 0$ or $x \geq 2$

7. $E \cap F = \emptyset$

$E \cup F = (-\infty, 2] \cup (8, \infty)$

8. $D \cup E = (-\infty, 5]$

$D \cap E = (-\infty, 3)$
11. \((-\infty, -5)\)

12. \((-\infty, 4]\)