Chapter 6: Bone and Bone Tissue

Skeletal system

Bones are main organs:
- osseous tissue
- dense regular and irregular CT, plus bone marrow

→ Module 6.1: Introduction to Bones as Organs

FUNCTIONS OF THE SKELETAL SYSTEM

• Functions:
 1. Protection

 2. Mineral storage and ______________________

 3. Blood cell formation: ______________________ involved in formation of blood cells
 (hematopoiesis or hemopoiesis)

 4. Fat storage: in yellow bone marrow of ________________

 5. Movement: bones are sites for skeletal muscle attachment

 6. Support: supports weight and provides ________________

BONE STRUCTURE CLASSIFICATION

(based on shape)

1. Long bones
 - longer than they are wide;
 - include most bones in arms and legs

2. Short bones
 - roughly cube-shaped
 - include carpals and ___________
3. Flat bones
 – thin and broad bones
 - ribs, pelvis, sternum and ________________

4. Irregular bones
 – include __________ and certain skull bones

5. Sesamoid bones
 – located within __________

BONE STRUCTURE

Structure of long bone:
- Periosteum
 - membrane surrounds outer surface
- Perforating fibers (Sharpey’s fibers)
 - anchors periosteum firmly to bone surface
- Diaphysis – ________________
- Epiphysis - __________ of long bone (proximal & distal)
- Articular cartilage – hyaline cartilage
- Marrow cavity – contains bone marrow (red or yellow)
- Endosteum – thin membrane lining marrow cavity

Compact bone
- hard, dense outer region
- allows bone to resist stresses (compression & twisting)

Spongy bone (___________ bone)
- found inside cortical bone
- _honeycomb-like framework_ of bony struts;
- resist forces from many directions

Epiphyseal lines
- _separates_ epiphyses from diaphysis
- remnants of epiphyseal plates
• **Epiphyseal plates** (________ plates)
 - hyaline cartilage found in developing bones of children

Structure of short, flat, irregular, and sesamoid bones
 - covered by periosteum
 - diploë = two outer layers of thin compact bone with middle layer of spongy bone
 - sinuses = air-filled spaces ______________

Bone Marrow Transplantation

- Diseases of blood
- Needle is inserted into pelvic bone
- Recipient’s marrow is destroyed
- Complications –
 - Many recipients can return to a healthy life if transplant “takes”

→ **Module 6.2: Microscopic Structure**

Extracellular matrix of bone:
- **Inorganic matrix** (65%)
 - consisting of ___________ (hydroxyapatite salts of Ca & P)
- **Organic matrix** (35%)
 - osteoid
 - consists of collagen fibers and *usual ECM*

Bone cells :
- **Osteogenic** – differentiate into osteoblasts
- **Osteoblasts** – ______________
- **Osteocytes** – mature bone cells in lacunae
- **Osteoclasts**
 - bone ____________
 - secrete acid and enzymes
Structure of compact bone:

Osteon (Haversian system)
- Lamellae = concentric rings of *thin layers of bone*
- Central canal = contains blood vessels & nerves
- Lacunae = _________ for osteocyte
- Canaliculi = _________
- Perforating canals (Volkmann’s canals) *perpendicular to central canals*

Structure of spongy bone
- usually not wt. bearing
- not organized into osteons
 ________________ = bony struts

→ *Module 6.3: Bone Formation and Ossification*

OSSIFICATION

- **Ossification** (*osteogenesis*)
 - Process of bone formation
 - Begins in embryonic period and continues throughout adulthood

[fetal “skeleton”]

[14 weeks]

cartilage template fibrous CT

endochondral

fibrous CT

intramembranous
INTRAMEMBRANOUS OSSIFICATION

- **Intramembranous ossification**
 - forms many ____________(bones of skull and clavicles)
 - formed within a mesenchymal ____________
 - spongy bone ossifies before outer compact bone layers
 - forms **primary ossification center**
 - ____________ = areas of incomplete intramembranous ossification

ENDOCHONDRAL OSSIFICATION

- **Endochondral ossification** *(Figure 6.12)*:
 - Bone development for all bones below head except ____________
 - Many bones **complete ossification** by age 7

- Endochondral ossification
 - bones begin within **hyaline ____________**
 - Hyaline cartilage model made of *chondrocytes, collagen, and ECM* surrounded by
 - **CT perichondrium**
 - Cartilage breaks down
 - Collar formation (periosteum)
 - ____________ **ossification center** mid-diaphysis
 - **secondary ossification centers** at ____________
 - Most bones of skeleton formed this way.

Osteoporosis and Healthy Bones

- Most common bone disease in U.S

- Diagnosed by *bone density measurement*

- **Causes** – *dietary* (calcium and/or vitamin D deficiency)

- Prevention

- Treatment
Module 6.4: Bone Growth in Length

Growth in Length

• Long bones lengthen via **longitudinal growth**; involves division of
 ____________ (not osteocytes or osteoblasts) in epiphyseal plate
• Bone growth takes place at epiphysis on side **closest to diaphysis**

• **Epiphyseal plate**
 1. **Zone of reserve cartilage** – (found closest to epiphysis) contains cells that are not directly involved in bone growth but can be recruited for cell division if need arises
 2. **Zone of proliferation** - consists of actively dividing chondrocytes by endochondral ossification
 3. **Zone of hypertrophy and maturation** (next region closer to diaphysis) contains mature chondrocytes
 4. **Zone of calcification** (second to last region) contains dead chondrocytes, some of which have been calcified
 Calcified cartilage is replaced with bone.
 5. **Zone of ossification** (last region) consists of calcified chondrocytes and osteoblasts

• Longitudinal growth continues at epiphyseal plate as long as mitosis continues in zone of proliferation:
 – Mitotic rate slows around ages of 12-15 years old
 Between ages of 18-21 epiphyseal plate is **closed**
 – ____________ is a calcified remnant of epiphyseal plate

GROWTH IN WIDTH

Appositional growth = ________________

• Osteoblasts, lay down new bone
 – Appositional growth does not result in immediate formation of osteons; instead, new circumferential lamellae are formed
 – Bones may continue to increase in width even after epiphyseal plates have closed and bone is no longer lengthening
Achondroplasia

• Most common cause of dwarfism; gene defect

• Defective gene produces an abnormal growth factor receptor

• Bones form and grow abnormally

• Long-term problems

ROLE OF HORMONES IN BONE GROWTH

• Growth hormone (GH) – secreted by anterior pituitary gland; enhances protein synthesis and cell division in most all tissues, including bone

• Prolonged effect on bone growth:
 – Increases appositional growth in males
 – Increases rate of mitosis in epiphyseal plate; leads to “growth spurts” in teenage years

• Estrogen also plays a role in bone growth:
 – Increases rate of longitudinal growth and inhibits osteoclasts
 – Accelerates closure of epiphyseal plate at much faster rate than testosterone

Gigantism and Acromegaly

• Excess GH can produce two conditions, depending on when in life it develops; both generally caused by a _________ that secretes hormone

• Childhood – condition is ___________

• Adulthood – condition is ___________

→ Module 6.5: Bone Remodeling and Repair

BONE REMODELING

• Bone remodeling = new bone is formed by bone _________ and old bone is removed by bone ___________
– Maintenance of calcium ion homeostasis
– Replacement of old brittle bone with newer bone
– Adaptation to tension and stress

• **PTH** (parathyroid hormone from parathyroid gland) stimulates effects that __________ blood Ca+2 levels
 o Increases osteoclast activity
 o Increases absorption of calcium from gut
 o Inhibits calcium loss in urine

• **Calcitonin** (from thyroid gland)
 causes __________ blood Ca+2 levels
 o Inhibits osteoclasts
 o Increases calcium loss in urine

Thyroid Gland Secretes __________

Parathyroid Glands Secretes __________

• Factors influencing bone remodeling are summarized:

Bone Repair

Fractures:

– **Simple fractures** vs ________________ fractures

– **Spiral**

– **Compression**

– **Comminuted**

– **Avulsion**

– **Greenstick**

– **Epiphyseal plate**
Chapter 7: The Skeletal System

Skeletal System = _______ bones plus cartilages
- Axial (80 bones)
- Appendicular (126 bones)

Module 7.1: Overview of the Skeletal System

STRUCTURE OF THE SKELETAL SYSTEM
& SKELETAL CARTILAGES

Axial skeleton
– Skull, vertebral column, thoracic cage (ribs, sternum), ________________

• Appendicular skeleton
 – Bones of pectoral girdle, upper limb, pelvic girdle, and lower limb
Pectoral girdle – ________________; anchors upper limb to trunk
Pelvic girdle – ________________ bones; anchors lower limb to trunk

Bone Markings

Fossa –
Canal (meatus)-
Condyle -
Head -
Foramen –

Module 7.2: The Skull

OVERVIEW OF SKULL STRUCTURE

• Skull = 22 bones organized in two groups:
 – Cranial bones – collectively known as cranium, composed of _____ bones
 (STEP OFF my skull)
 • Frontal -1
 • Occipital -1
 • Ethmoid -1
 • Sphenoid – 1
 • Parietal – 2
 • Temporal – 2
– **Facial bones** = _______ bones
 • Maxillary – 2
 • Zygomatic -2
 • Nasal -2
 • Lacrimal -2
 • Palatine -2
 • Inferior nasal concha -2
 • Mandible -1
 • Vomer -1

• Sinuses = ___________, membrane-lined spaces;
 paranasal sinuses = frontal, ethmoid, sphenoid, maxillary

CAVITIES OF THE SKULL

• **Orbit** – FLEZMS 7 *fused bones*; form walls that encase eyeball, lacrimal gland, and their associated blood vessels, muscles, and nerves
 – **Frontal bone**
 – **Lacrimal**
 – **Ethmoid**
 – **Zygomatic**
 – **Maxilla**
 – **Sphenoid bone**
 - and ___________ bones

THE FETAL SKULL

Fontanel (soft spot) = area of incomplete __________________________
 Anterior
 Posterior
 Sphenoid
 Mastoid

HYOID BONE

• **Hyoid**
 – doesn’t *articulate* with any other bones
 – C-shaped bone
 – Provides numerous muscle attachment points involved in __________________________
Forensic Skull Anatomy

• Forensic investigators often must identify human remains with little to go on except bones; can provide many clues (particularly skull); one of most basic traits that can be identified from a skull is gender
• Four obvious differences:

→ Module 7.3: Vertebral Column & Thoracic Cage

OVERVIEW OF THE VERTEBRAL COLUMN

Vertebral column (spine) – composed of about _____ bones (vertebrae)

• 7 cervical – located in _____
• 12 thoracic – articulate with ______
• 5 lumbar – in __________

• 5 fused sacral (collectively called sacrum)
• 3-5 fused coccygeal (collectively called coccyx)

• Spinal curvatures – C-shaped vertebral column of newborn → S-shaped secondary curvatures as infant grows
 – Primary curvatures (_________ and sacral) present during fetal dev.
 – Secondary curvatures (_________ and lumbar) dev. after fetal period

• Abnormal spinal curvatures:
 o Scoliosis – abnormal _______ curvatures
 o Lordosis (swayback) – exaggerated cervical and _______ curvatures
 o Kyphosis (hunchback)
 – exaggeration of _______ curvature

STRUCTURE OF THE VERTEBRAE

• Cervical (7) – smallest vertebrae
 – _______ foramina allows passage of vertebral arteries and veins
 – C1 (_______)
 • Lacks vertebral body
 • Articulates with occipital condyles and C2
 – C2 (______)
 • Dens (odontoid process) protrudes from body
 • Allows for rotational movement of head at neck; (shaking your head “no”)
• **Thoracic vertebrae (12)**
 - long spinous processes
 - Superior and inferior costal facets (articulate with head of rib)
 - Transverse costal facets on transverse processes (articulate with _________ on rib)
 Posterior view: Shaped like ____________

• **Lumbar vertebrae (5)**
 – largest and heaviest of all vertebrae (______________)
 Posterior view- shaped like ______________

• **Sacrum** – 5 fused sacral vertebrae
 – Sacral promontory – bony projection at anterior margin of base (superior aspect)
 – Sacral foramina – 4 pairs of holes allows for ______ ________________

• **Coccyx** = 4 fused (3-5) vertebrae

STUDY BOOST: REMEMBERING SKULL BONES AND VERTEBRAE

• **PEST OF 6 (six cranial bones):** Parietal, Ethmoid, Sphenoid, Temporal, Occipital, Frontal
• **Virgil Is Now Making My Pet Zebra Laugh (facial bones):** Vomer, Inferior nasal conchae, Nasal, Mandible, Maxillae, Palatine, Zygomatic, Lacrimal
• **For Easier Sinus Memorization (paranasal sinuses):**
 Frontal, Ethmoidal, Sphenoidal, Maxillary
• **Breakfast at 7, lunch at 12, dinner at 5 (number of vertebrae):** 7 cervical, 12 thoracic, and 5 lumbar

Sphenoid = Bat bone Ethmoid = iceberg in skull

Thoracic giraffe Lumbering moose
• **Intervertebral disc**
 = *fibrocartilage pad* found between bodies vertebrae
• **Nucleus pulposus** – *jelly-like* substance; shock absorber
• **Anulus fibrosus** – outer ring of __________
 Herniated disc or “slipped disc”

![Herniated Disc](image)

Herniated Disc
• A tear in anulus fibrosus can allow nucleus pulposus to *protrude*, a condition known as a
 herniated disc (commonly called a *slipped disc*)
• Bulging nucleus pulposus *compresses* nerve
• Treatments

![The Thoracic Cage](image)

THE THORACIC CAGE
• **Thoracic cage**
 =
 – sternum
 • **Manubrium** – *superiormost*
 • **Body** - *middle*
 • **Xiphoid process** – *inferior*

Rib cage
12 pairs of ribs and their costal cartilages
• Ribs 1–7 (_______ ribs or **vertebrosternal** ribs) attach to sternum via their *costal cartilages*
• Ribs 8–12 (_______ ribs) not directly attached to sternum
 – **Vertebrochondral** ribs 8–10 – attached to *cartilage of 7th rib*
 – _________ or **vertebral** ribs 11 & 12
 - are not attached to sternum

Structure of a typical rib.

![The Sternum and CPR](image)

The Sternum and CPR
• **Cardiopulmonary resuscitation** (CPR)

 • *Correct placement of hands on sternum is critical*
Module 7.4: Bones of the Pectoral Girdle and Upper Limb

PECTORAL GIRDLE

- **Pectoral girdle** – clavicle and scapula
 - **Clavicle**
 - Sternal end
 - Acromial end
 - **Scapula**
 - Acromion
 - Coracoid process
 - **Subscapular fossa** (anterior aspect)
 - **Glenoid cavity** (articulates with head of humerus)
 - Spine (________ ridge)
 - **Supraspinous fossa**
 - **Infraspinous fossa**

THE HUMERUS

- **Humerus**
 - **head** articulates with **glenoid cavity** at shoulder joint
 - ________ neck is a groove surrounding head
 - ________ neck proximal diaphysis
 - **greater & lesser tubercle** lateral and anterior to head
 - olecranon fossa
 - coronoid fossa
 - capitulum
 - trochlea

BONES OF THE FOREARM

Bones of forearm (antebrachium)

- **Radius** (________ bone)
 - head, neck, radial tuberosity, styloid process
- **Ulna** (_________
 - trochelear notch, olecranon, coronoid process, radial notch, styloid process
BONES OF THE WRIST: CARPALS

Wrist (carpus) – ________________ (carpals)
(lateral to medial)
– Scaphoid, Lunate, Triquetrum, Pisiform (proximal)
– Trapezium, Trapezoid, Capitate, Hamate (distal)

BONES OF THE HAND AND FINGERS: METACARPALS AND PHALANGES

Metacarpals – 5 each hand
Phalanges – 14 each hand
 - proximal, middle, and distal __________
 - Thumb proximal & distal phalanx

Wrist Fractures
• Wrist is the most frequently injured region of upper limb;
• Fractures
 Colles fracture

Module 7.5: Bones of the Pelvic Girdle and Lower Limb

BONES OF THE PELVIC GIRDLE AND LOWER LIMB

Pelvic girdle =
• coxal bones (also known as os coxae)
• Articulates with sacrum (axial skeleton)

Pelvis – bowl-shaped sacrum and two coxal bones; creates boundary for pelvic cavity
 Pelvic inlet – oval opening formed by sacrum and pelvic girdle
 Pelvic brim – bony ridge surrounding inlet that defines boundaries between greater and lesser pelvis

• Each __________ is composed of 3 fused bones:
 ilium, ischium, and pubis

Female and male pelvis differ between genders:
 female pelvis (adapted for childbirth) is wider and shallower than male
• **Shape of greater pelvis:**
 - pelvis is *wider* in females with *flared* iliac crests
 - increases distance between ASIS

• **Coccyx and sacrum:**
 - female sacrum is *wider* and *shorter* than male sacrum
 - while female coccyx is more *moveable* and more *posterior* than male

• **Pelvic inlet and outlet:** female inlet is usually *wider* and *oval-shaped* whereas male inlet is *narrow* and *heart shaped*; female outlet is generally *wider* than male

• **Acetabula:** generally *farther apart* in females and pointed more *anteriorly* than in males

• **Public arch:**
 – angle measured in females = __________
 – male arch measures between __________

FEMUR AND PATELLA

• **Femur** – *largest* and *strongest* bone
 – head articulates with ______________ at hip joint
 – Neck
 – Greater and Lesser trochanter
 – Linea aspera
 – Medial and a lateral condyles
 – Patellar surface

• **Patella**

BONES OF THE LEG: TIBIA AND FIBULA

• **Tibia** (_______ bone) larger bone, wt. bearing
 – Tibial tuberosity
 – Medial malleolus

• **Fibula** (_______ bone)
 – Lateral malleolus
Bones of the Ankle and Foot:
Tarsals, Metatarsals, and Phalanges

- **Tarsals** – 7 short bones
 - Proximal tarsals: ________, calcaneus, and navicular
 - Distal tarsals medial to lateral: 3 cuneiforms (medial, intermediate, lateral) and cuboid
- **Metatarsals** – 5 in each foot
- **Phalanges** – 14 in each foot

Study Boost: Remembering Bones of the Arm and Leg

Carpals: Stop Letting The People Touch The Cadaver’s Hand
= Scaphoid, Lunate, Triquetrum, Pisiform, Trapezium, Trapezoid, Capitate, Hamate
(Mentions “hand”, so remember that it describes carpals, not tarsals; trapeziUM is by thUMb)

Tarsals: College Needs Me In Lab Classes
= Talus, Calcaneus, Navicular; Medial, Intermediate, & Lateral cuneiform, Cuboid
Chapter 8: Articulations

Articulations (joints) = where bones meet
- allow __________
- provide __________
- allow long bones to ________ (epiphyseal plate)

Module 8.1: Classification of Joints

FUNCTIONAL CLASSIFICATION

Based on __________:
• Synarthrosis – no movement between articulating bones
• Amphiarthrosis – small amount of movement between articulating bones
• Diarthrosis – freely moveable, allowing a wide variety of specific movements

STRUCTURAL CLASSIFICATION

Based on their __________ features:
• Fibrous joints – dense regular collagenous CT;
 (synarthroses or amphiarthroses)
• Cartilaginous joints – cartilage; (synarthroses or amphiarthroses)
• Synovial joints – fluid-filled joint capsule with hyaline cartilage at articular ends;
 (diarthrosis)

Module 8.2: Structural Classification: Fibrous Joints

FIBROUS JOINTS

3 types:
• Suture
• Gomphosis
• Syndesmosis

• Suture - fibrous CT
 ________________ of cranium; immoveable joint

• Gomphosis – tooth in bony socket (periodontal ligament);
 ____________ joint

• Syndesmosis – joint between tibia & fibula, ulna & radius (interosseous membrane);

Module 8.3: Structural Classification: Cartilaginous Joints

Cartilaginous Joints

2 types:
- Synchondrosis
- Symphysis

Synchondrosis - *hyaline cartilage*;
 Synarthroses (epiphyseal plate, 1st sternocostal and costochondral joints);

Epiphyseal Plate Fractures
- Epiphyseal plate in a child’s long bone is one of the *weakest parts* of a developing skeleton;

- Treatment

Fibrous Joints

- **Symphysis** – *fibrocartilaginous pad; amphiarthrosis*
 - __________
 - Pubic symphysis

Module 8.4: Structural Classification: Synovial Joints

Synovial Joints

- **Joint cavity** (*synovial cavity*) – space found between articulating bones

- **Articular capsule** – double-layered structure
 - Outer fibrous layer
 - Inner synovial membrane \(\rightarrow\) synovial fluid (lubricates, metabolic fcn., shock absorber)

- __________ *cartilage* – *hyaline cartilage; covers* all exposed articulating bones within a joint

- Diarthrosis
STABILIZING AND SUPPORTING FACTORS

- Synovial joints allow more *mobility*
 - less *stable* than other joint types
- structures that provide additional stabilization:

 Ligament – dense regular CT connects ____________

 Tendon - dense regular CT connects ____________

Bursae and tendon sheaths provide stabilization forces

![Bursitis](image)

- **Bursitis**

 - Most common sites of bursitis

 - Clinical features

ARTHHRITIS

- **Arthritis** – defined as *inflammation* of one or more joints which results in pain and limitations of joint movement:
 - **Osteoarthritis (OA)** – most common; associated with ____________, *injuries*, and advanced *age*; characterized by pain, joint stiffness, and lost mobility
 - **Rheumatoid arthritis (RA)** – associated with joint destruction; ____________
 - **Gouty arthritis** – joint damage due to inflammatory reaction to ____________ deposits

→ Module 8.5: Functions of Synovial Joints

MOVEMENTS AT SYNOVIAL JOINTS

- **Gliding movements** – *sliding motion* between articulating surfaces
- **Flexion, Extension, Hyperextension**
- **Abduction, Adduction**
- **Circumduction, Rotation**
- **Inversion, Eversion**
- **Supination, Pronation**
- **Dorsiflexion, Plantar flexion**
Module 8.6: Types of Synovial Joints

Types of Synovial Joints

- **Plane joint** (gliding joint) – most simple and least mobile articulation between flat surfaces of two bones

- **Hinge joint** – convex articular surface of one bone interacts with concave depression of second bone

- **Pivot joint** – one bone pivots or rotates around other

- **Condylar (ellipsoid) joint** – convex surface of one bone fits into concave articular surface of a second bone

- **Saddle joint** – each bone’s articulating surface has both a concave and convex region

- **Ball-and-socket joint** – spherical surface of one bone fits into cup-shaped depression in second bone

Specific Hinge Joints

Elbow – very stable hinge joint:
- **Humeroulnar joint** – articulation between *trochlea* of humerus and *trochlear notch* of ulna
- **Humeroradial joint** – articulation between *capitulum* of humerus and head of radius

A & P FLIX: MOVEMENT AT THE ELBOW

Knee:
- __________ joint – articulation between *femoral* and *tibial condyles*
- **Patellofemoral joint** – articulation between posterior surface of *patella* and anterior patellar surface of *femur*
- Medial and lateral meniscus – fibrocartilage pads between femoral and tibial condyles
- **Tibial collateral ligament** (medial collateral) – connects femur, medial meniscus, and tibia to one another to provide *medial joint stabilization*

A & P FLIX: MOVEMENT AT THE KNEE JOINT
Knee Injuries and the Unhappy Triad

• **Shoulder** (____________) – ball-shaped head of humerus and glenoid cavity:
 – Glenoid labrum – fibrocartilaginous ring; increases depth of glenoid cavity to provide more stability
 – Biceps brachii tendon - helps keep head of humerus within glenoid cavity
 – Rotator cuff, providing most of joint’s structural stabilization: _____________, infraspinatus, subscapularis, and ____________

A & P FLIX: MOVEMENT AT THE GLENOHUMERAL JOINT

• **Hip** (_______) – acetabulum and ball-shaped head of femur:
 – Acetabular labrum – fibrocartilaginous ring that helps to stabilize head of femur within acetabulum

A & P FLIX: MOVEMENT AT THE HIP JOINT

Hip Joint Replacement Surgery

• **Hip replacement** – surgical procedure that replaces a painful damaged joint with an artificial prosthetic device

• Severe arthritis, trauma, fractures, and bone tumors can all progress to point where hip joint replacement is an option

• **Total replacement**

• **Partial replacement**