Chapters 11: Introduction to the Nervous System and Nervous Tissue

Nervous system – controls our perception and experience of world

- Directs ____________movement
- Seat of consciousness, personality, learning, and memory
- Regulates ____________

→ **Module 11.1: Overview of the Nervous System**

Anatomical Divisions of the Nervous System

[2 Anatomical Div. = CNS, PNS]

1. ____________ – includes **brain** and **spinal cord**

2. ____________ – consists of all **nerves** in body outside protection of skull and vertebral column (cranial nerves, spinal nerves)

Functional Divisions of the Nervous System

[3 Functional Div. = Sensory, Integrative, Motor]

1. **sensory receptors** gather information about internal and external environments

 - **afferent division** carries information toward CNS
 a. ____________sensory division
 – signals from ____________, bones, joints, and skin;
 - **special sensory div.** (vision, hearing, taste, smell, and balance)

 b. ____________sensory division
 – signals from ____________ (organs)

2. ____________ **functions** – analyze and interpret incoming sensory information and determine response
3. ___________functions
 – actions performed in response to integration
 - ___________division carries information away from CNS
 a. ___________nervous system – info to skeletal muscle
 b. ___________nervous system (ANS) – information to smooth muscle, cardiac
 muscle, glands

Module 11.2: Nervous Tissue

Neurons – excitable cell type responsible for sending and receiving signals in form of
action potentials (AP)

A. Structure of neurons

1. nucleus, cytoplasm with organelles, ___________ (RER, gray color)

2. Cytoplasmic extensions (processes):
 ___________ – receive information from other neurons, conduct impulse toward soma
 ___________ (nerve fiber) – conducts impulse away from soma, includes axon hillock, axon terminals (synaptic knobs)

Poliovirus and Retrograde Axonal Transport

• ___________ – caused by poliovirus; infection that impacts CNS (especially SC) → deformity and paralysis
 • No cure exists, but prevented by vaccination
 • Virus accesses CNS by entering muscle cells → motor neurons at NMJ → retrograde axonal transport until reaching SC
 • Other viruses (herpes simplex, rabies) and toxins (tetanus) can to invade via this method
Classification of Neurons

- **Structural:**
 - ________ neurons – single axon and multiple dendrites, > 99% of all neurons
 (motor)
 - ________ neurons – one axon, one dendrite, and cell body between them; found in eye and olfactory epithelium (sensory)
 - ________ neurons – have only one fused axon that extends from cell body and divides into two processes (sensory)

- **Functional:**
 - ________ (afferent neurons) – carry information toward CNS; pseudounipolar or bipolar
 - ________ (association neurons) – relay information within CNS between sensory and motor neurons; make up most of neurons in body; multipolar
 - ________ (efferent neurons) – carry information away from cell body in CNS to muscles and glands; multipolar

Neurons

- Specific neuron components group together:

 CNS:
 - ________ – clusters of neuron cell bodies
 - ________ – bundles of axons

 PNS:
 - ________ – clusters of neuron cell bodies
 - ________ – bundles of axons
Neuroglia

• ____________ – provide support and protection for neurons, maintain their environment, divide and fill space when a neuron dies

 - CNS:
 • Oligodendrocytes
 • Ependymal cells
 - PNS:
 • Schwann cells

• CNS:
 ____________ – large star-shaped cells

 Facilitate transport of nutrients and gases between blood vessels and neurons; form blood-brain barrier (BBB)

 - ____________ – form myelin in CNS
 - ____________ – activated by injury into phagocytic cells
 - ____________cells – ciliated cells that manufacture and circulate CSF

• PNS:
 - ____________cells – produce myelin
 - ____________cells – supportive functions

The Myelin Sheath

__________ = repeating layers of phospholipid plasma membrane, insulation

Nodes of Ranvier = gaps between myelin sheaths

__________ = myelinated axons

__________ = neuron cell bodies, unmyelinated processes
Regeneration of Nervous Tissue

Regeneration nearly nonexistent in CNS and is limited in PNS

- **Regeneration** steps:
 1. Degeneration of axon and myelin sheath *distal* to injury (*Wallerian degeneration*)
 2. _________ _________ from proximal end of axon
 3. Schwann cells form *regeneration tube*
 4. **Single growth process grows** into regeneration tube
 5. New axon is _____________ to its target cell

Gliomas and Astrocytomas

- **Primary brain tumors** – originate in brain; most are _____________ (caused by abnormally high rate of division of glial cells)
- **Predisposing conditions** – exposure to ionizing radiation and certain diseases
- Most commonly affected cell is _____________ → tumor is called _____________

 Range in severity from mild with good prognosis to highly aggressive with very poor prognosis

 Treatment – varies with tumor type, age, and health of patient; usually involves surgical removal of mass with chemotherapy and perhaps radiation therapy

→ **Module 11.3: Electrophysiology of Neurons**

Introduction to Electrophysiology of Neurons

- All neurons are excitable or responsive to stimuli (chemical, electrical, and mechanical)
- Stimuli generate electrical changes across plasma membrane (PM)
 - _____________ potentials – travel short distances
 - _____________ potentials – travel entire length of axon; begin at trigger zone → axon terminal
• Ion channels – ions must rely on specific protein channels for diffusion

• Resting Membrane Potential (RMP) = - __________

due to difference in distribution of ions across PM

Principles of Electrophysiology: Types of Ion Channels

__________ - Ions follow conc. gradient

__________ - Open in response to specific chemical binding

__________ - Open or close due to changes in voltage across PM

__________ - Open or close due to mech. stim. (stretch, press., vibration)

Principles of Electrophysiology

RMP =

Cell is polarized (positive on outside, negative on inside of PM)

Diffusion of ions across PM determined by **Electrochemical Gradient**:

• Electrical gradient:

 ________ on __________, ________ on __________ of plasma membrane

• Chemical Gradient:

 ______ outside > Na+ inside

 ______ inside > K+ outside

How Do Positive Ions Create a Negative Resting Membrane Potential

• A neuron that has no membrane potential; charges are distributed equally across plasma membrane

• Now, imagine that a potassium ion diffuses out of cytosol down concentration gradient through a leak channel...

• Six positive charges are now outside membrane and four positive charges inside; makes overall charge inside **cytosol** –1 and in **extracellular fluid** +1—a membrane potential has been created
• Imagine that many thousands of potassium ions exit through leak channels; causes membrane potential to become progressively more negative

Changes in Resting Membrane Potential: Ion Movements:
• ___________ –Na+ channels open, Na+ flow into cell; membrane potential becomes more positive
• ___________ – K+ ion channels open; K+ flow out of cell; cell becomes more negative, returning to RMP
• ___________ – cell becomes more negative than normal RMP due to efflux of K+ plus influx of Cl-

Local Potentials

___________ potentials – serve as triggers for long-distance AP

• May cause:

___________ – positive charges enter cytosol and make membrane potential less negative (−70 to −60 mV)

___________ – either positive charges exit or negative charges enter cytosol; makes membrane potential more negative (−70 to −80 mV)

• Sometimes called ___________ potentials because vary greatly in size

Action Potentials

• Events in an Action Potential:

1. Local potential must be able to depolarize axon strongly enough to reach ________ (usually −55 mV)

2. Depolarization – sodium ions rush in (___________)

3. __________ – potassium ions rush out (___________)

4. Hyperpolarization may occur
Local Anesthetic Drugs

- **Local anesthetics** – (like ____________) commonly administered agents for surgical or dental procedures; produce temporary numbness in specific area

- Block voltage-gated sodium channels of neurons in treated area; prohibits depolarization and therefore action potentials relaying pain are not transmitted to CNS

- Nonselective; also affect sodium channels in muscles of area; causes temporary paralysis; reason for crooked smiles and drooling following dental work

Refractory Period

- ___________ period – period of time, after neuron has generated an AP, when neuron cannot be stimulated to generate another AP

- ___________ refractory period – when no additional stimulus (no matter how strong) is able to produce additional AP

- ___________ refractory period – immediately after absolute refractory period; only a strong stimulus can produce AP

Local and Action Potentials Compared

- **Graded local potentials** produce variable changes in membrane potentials

 ___________ potentials cause a maximum ___________ to +30 mV

- **All-or-none principle** – AP that either happens completely or not at all

 If a neuron does not depolarize to threshold then no AP will occur

 AP are not dependent on strength, frequency, or length of stimulus like local potentials

Propagation of Action Potentials

- APs **conducted** (___________) along entire length of axon =

 – unidirectional

 – Each AP triggers next section of axon, usually starting at trigger zone and ending at axon terminals
Conduction speed – influenced by both axon diameter and presence or absence of myelination

– Presence or absence of ___________ gives rise to 2 types of conduction:
 – ___________ conduction – myelinated processes exhibit “jumping” type of conduction, ___________ rate
 – ___________ conduction – unmyelinated processes, _______ rate of conduction

Saltatory conduction –myelinated axons increase speed of conduction; AP only depolarize nodes of Ranvier and “jump over” ___________

Continuous conduction – in unmyelinated axons every section of axolemma from trigger zone to axon terminal must propagate AP; slower conduction speed

• Classification of Axons by Conduction Speed:

Type A fibers – _______ diameter (120 m/sec or 250 mi/h); (5–20 µm) and ___________; sensory and motor axons associated with skeletal muscle and joints

Type B fibers – ___________ diameter, slower conduction speeds (15 m/sec or 32 mi/hr); mostly ___________ with intermediate diameter axons (2–3 µm); ANS efferent fibers, some sensory

Type C fibers – ___________ diameter, slowest conduction speeds (0.5–2 m/sec or 1–5 mi/hr); (0.5–1.5 µm); ___________ ANS efferent fibers and sensory axons (transmit pain, temperature, and pressure)

Multiple Sclerosis

• Multiple sclerosis (MS) – certain cells of immune system attack myelin sheaths within CNS; type of ___________ ___________ (patient’s own immune system attacks part of body)

• Causes progressive loss of myelin sheath; in turn causes loss of current from neurons
• **Symptoms** – result from progressive slowing of AP propagation; symptoms depend on region of CNS affected; most exhibit changes in sensation (e.g., numbness), alterations in behavior and cognitive abilities, and motor dysfunction, including paralysis

→ **Module 11.4: Neuronal Synapsis**

Overview of Neuronal

• _____ _______ – where a neuron meets its target cell (in this case another neuron) is called a **neuronal synapse**

 - electrical (gap junctions) – breathing, cardiac & SMC

 - _____________ – most synapses

 – can occur between an axon of one neuron and another part of another neuron (dendrite, soma, axon)

 – **Presynaptic neuron → _____________ → Postsynaptic neuron**

Chemical Synapses

• **Events at a Chemical Synapse:**

 - multiple neurons secreting many different types of excitatory or inhibitory neurotransmitters

 1. AP in presynaptic neuron triggers ___________ **ion channels** in axon terminal to open
 2. _____________ of calcium ions causes synaptic vesicles to release neurotransmitter into synaptic cleft
 3. Neurotransmitters **bind to** _____________ on postsynaptic neuron
 4. **Ion channels open, leading to a local potential and possibly an AP** if threshold is reached

Postsynaptic potentials – can be *Excitatory* or *Inhibitory*:

 a. **Excitatory postsynaptic potential (EPSP)** = Membrane potential moves _____________ to threshold

 b. **Inhibitory postsynaptic potential (IPSP)** = Membrane potential moves _____________ away from threshold
Arthropod Venom

- **Venomous arthropods** (in United States) include spiders and scorpions; many of their venoms affect neuronal synapses; termed **neurotoxins**
 - ___________ (Latrodectus mactans) – toxin causes massive release of neurotransmitter leading to repetitive stimulation of postsynaptic neuron
 - ___________ – most lethal of 40 species in United States; venom prevents postsynaptic sodium channels from closing; membrane remains polarized and continues to fire action potentials
- Mechanisms are different but result is similar; both lead to overstimulation of postsynaptic neuron;
- **Common symptoms** – muscle hyperexcitability, sweating, nausea and vomiting, and difficulty breathing
- **Treatment and prognosis** – depends on amount of venom received and availability of medical care; severe cases usually require ___________ to block effects of toxin

Neural Integration

- Neurons receive input, both inhibitory and excitatory, from multiple neurons, each of which influences whether an action potential is generated
 - ___________ ___________ – process in which postsynaptic neuron integrates all incoming information into a single effect

→ **Module 11.5: Neurotransmitters**

Neurotransmitters

- Over 100 known neurotransmitters

4 groups:

1. ___________ (acetylecholine)- E [___________]
2. Biogenic amines: E
 Catecholamines (NE, Epi (adrenaline), dopamine) [____________]
 Serotonin
3. Amino acids: (Glutamate – E; GABA- Inhib.)
4. Neuropeptides: E and I (endorphins)

Psychiatric Disorders and Treatments

- **Psychiatric disorders** affect thought processes; generally treated by modifying synaptic transmission to change how neurons communicate

- **Psychopharmacology** (study of drugs that affect higher brain functions) targets either AP generation or some aspect of neurotransmitter physiology:

 ___________ – repetitive psychotic episodes (periods during which patient is unable to appropriately test beliefs and perceptions against reality); thought to result from excessive release of dopamine; management involves blocking postsynaptic dopamine receptors

 ___________ disorders – marked by disturbances in mood; decreased levels of serotonin, norepinephrine, and/or dopamine; most widely used antidepressants are selective serotonin reuptake inhibitors (SSRIs)

 ___________ – characterized by exaggerated and inappropriate fear responses; abnormalities in norepinephrine, serotonin, and GABA transmission; drugs for treatment include antidepressants, GABA activity enhancers

 ___________ – characterized by episodes of abnormal elevated mood (mania) followed by depression; treatments involve decreasing ease of AP generation
Module 11.6: Functional Groups of Neurons

Neuronal Pools

- Groups of interneurons within CNS:
 - Composed of neuroglial cells, dendrites, and axons in one location and cell bodies in another location
 - Connections between pools allow for complex mental activity (planned movement, cognition, and personality)

Neuronal Circuits

- **Neural circuits** – patterns of synaptic connection between neural pools
 - ___________ circuits
 - one neuron sends impulses to multiple postsynaptic neurons
 - incoming sensory information sent from SC to different neuronal pools in brain for processing
 - ___________ circuits
 - axon terminals from multiple neurons converge onto a single postsynaptic neuron
 - respond to sensory information
Chapter 12: The Central Nervous System

CNS =
- involved in movement, interpreting sensory, maintaining homeostasis, and functions relating to mind

→ Module 12.1: Overview of the Central Nervous System

Overview of CNS Functions

- Functions of nervous system:
 - __________ functions muscles contract, glands secrete (PNS)
 - __________ functions – sensations in and outside body (PNS)
 - __________ functions – include decision-making processes (CNS)
 - Interpretation of sensory information
 - Planning and monitoring movement
 - Maintenance of homeostasis
 - Higher mental functions such as language and learning

Basic Structure of the Brain and SC

- **Brain** – soft, whitish-gray organ in cranial cavity, continuous with SC
 - mostly nervous tissue; some epithelial and CT
 - __________ filled with cerebrospinal fluid (___________)
 - ~20% of cardiac output; requires large amounts of O₂, glucose, and nutrients

4 divisions of brain:

- __________
 - left and right hemispheres
 - higher mental functions, sensory & motor
• __________ - deep to hemispheres
 - process, integrate & relay; homeostasis; bio rhythms
• __________ - inferior to occipital lobe
 - voluntary motor activities
• __________ = midbrain, pons, medulla oblongata
 - reflexes, homeostasis, relay information

__________ – located in **vertebral cavity**
 - Extends from foramen magnum to L1 & L2
 - Length ~ 45 cm (17–18 inches)
 - Diameter 0.65–1.25 cm (0.25–0.5 inches)
 - __________ – CSF filled cavity within SC, continuous with brain’s ventricles

White matter – found in both brain and SC; (___________ axons)

___________ = bundles of white matter (processes in CNS)
___________ = clusters of cell bodies and dendrites (gray matter)

___________ matter – found in both brain and SC;
 (cell bodies, dendrites, and unmyelinated axons)
 1. Cerebral cortex is gray matter
 2. Center H (butterfly)-shape of SC

→ **Module 12.2: The Brain**

The Cerebrum

• __________ – shallow grooves on surface of cerebrum
• __________ - elevated ridges found between sulci
• **Corpus callosum** – connects right & left hemispheres
• **Fissure** – deep groove that separates left and right cerebral hemispheres

• **Transverse fissure** – separates occipital lobe from cerebellum

• **Sulci** – CSF-filled cavities, one in each hemisphere

• Five lobes are found in each hemisphere:

 o **Frontal lobe** (motor, complex mental fcn.)

 o **Parietal lobe**

 o **Temporal lobe**

 o **Occipital lobe**

 o **Insula**

• **Cerebral Cortex** = gray matter, covers cerebral hemispheres

• All neurons in cortex are interneurons

• Functions of neocortex (most recently evolved part of brain) include conscious processes as planning **movement**, interpreting incoming **sensory information**, and **complex higher functions**

• **Gray Matter: Cerebral Cortex:**

 o Neocortex is divided into three areas: [Motor, Sensory, Association]

 1. **Motor cortex** – plans and executes movement
 - located in frontal lobe (pre-central gyrus)

 ▪ **Sensory cortex** = anterior to primary motor cortex, plan and carry out movement

 ▪ **Eye fields** - back and forth eye movements as in reading

 2. **Primary sensory cortices** = receive and process sensory input

 ▪ Somatosensory areas – in postcentral gyrus of parietal lobe; cutaneous (temp. & touch)

 ▪ Visual areas –

 ▪ Auditory areas –
- Gustatory cortex – insula and parietal
- Olfactory cortex –

3. **Association areas** integrate different types of information
 - ___________ – produce speech sounds
 - **Prefrontal cortex** – most of frontal lobe, fcn. in behavior, personality, learning, memory
 - **Parietal & temporal association cortices** – integrate sensory info, attention

- **Basal nuclei**
 - masses of gray matter deep within each hemisphere
 - Caudate nuclei
 - Putamen
 - Globus pallidus

- **Limbic system**
 - includes limbic lobe, hippocampus, amygdala
 - connect these regions of gray matter with rest of brain
 - Found only within mammalian brains

The Diencephalon

Diencephalon – located in center of brain between hemispheres above brainstem
- 4 parts: Thalamus, Hypothalamus, Epithalamus, Subthalamus
Gateway for sensory info. to cerebral cortex

Receives all sensory (except smell)

- Regulation of ANS, sleep/wake cycle, thirst and hunger, and body temperature

Secretes hormones that reg. pituitary & other glands

- _______________ – superior to thalamus; includes endocrine gland called pineal gland that secretes melatonin; hormone involved in sleep/wake cycle

- _______________ – inferior to thalamus; functionally connected with basal nuclei; together, they control movement

Cerebellum

- located inferior to occipital lobe

- arbor vitae

The Brainstem

Brainstem

- vital to our immediate survival

- Includes midbrain, pons, medulla oblongata

- surrounds cerebral aqueduct (connects third and fourth ventricles)

- Superior and inferior _____________: involved in visual and auditory reflexes respectively

- Substantia nigra – works with basal nuclei to control movement; produces dopamine

- _______________ – inferior to midbrain
- Regulation of movement, breathing, reflexes, and complex functions associated with sleep and arousal

• ___________ ___________ – most inferior structure of brainstem

- Regulation of breathing, and other vital activities

Module 12.3: Protection of the Brain

Brain Protection

Three features protect delicate brain tissue:

1. ___________ ___________ – three layers of membranes that surround brain

2. Cerebrospinal fluid (CSF) – fluid that bathes brain and fills cavities

3. Blood-brain barrier – prevents many substances from entering brain and its cells from blood

• Cranial meninges
 – composed of three layers:
 superficial to deep:
 epidural space
 a. subdural space
 b. (weblike)
 subarachnoid space (CSF filled)
 c. (in contact with brain tissue)

The Ventricles and Cerebrospinal Fluid

• Four ventricles within brain (1st & 2nd = lateral ventricles, 3rd and 4th ventricle connected via cerebral aqueduct)
 continuous with central canal of spinal cord
 Lined with ___________ cells
 Filled with ______________

• CSF (similar to plasma)
Reabsorbed by arachnoid villi (granulations)

~800ml produced daily, only 150ml at any time

Cushions brain, maintains temp., removes wastes, provides buoyancy

Infectious Meningitis

- Potentially life-threatening infection of meninges in subarachnoid space; *inflammation* occurs, causing classic signs: headache, lethargy, stiff neck, fever

- **Diagnosis** – examination of CSF for infectious agents and white blood cells (cells of immune system); bacteria and viruses are most common causative agents:

 ___________ – generally mild; resolves in 1–2 weeks

 ___________ – can rapidly progress to brain involvement and death; aggressive antibiotic treatment necessary; some most common forms are preventable with vaccines

➔ Module 12.4: The Spinal Cord

The Spinal Cord

- ___________ – composed primarily of nervous tissue; responsible for both relaying and processing information (reflexes)

- Spinal Meninges (similar to cranial meninges)

 ___________ **space** – space between meningeal dura and walls of vertebral foramina; filled with veins and adipose tissue; cushions and protects spinal cord

 ___________ **space** – between arachnoid and pia mater; filled with CSF; base of spinal cord contains a large volume of CSF useful site for withdrawing samples laboratory testing

Epidural Anesthesia and Lumbar Punctures
• **Epidural (spinal) anesthesia** – local anesthetic medication is injected into epidural space through an inserted needle

 • Causes “**numbing**” (inability to transmit motor or sensory impulses) of nerves extending off spinal cord below level of injection

 • Commonly given during childbirth and other surgical procedures

 • ________ _________**(spinal tap)** – needle inserted into subarachnoid space between L4 and L5; avoids possibility of injuring SC

 • CSF is withdrawn for analysis; used to assess conditions like **meningitis**, **encephalitis** and **multiple sclerosis**

External Spinal Cord Anatomy

• ________ – extends from between L1 and L2 to coccyx

 - composed of spinal pia mater

• ________ = bundle of spinal nerves contained in vertebral canal

• **Spinal nerves (PNS)**; carry sensory and motor impulses to and from SC

 • Posterior (dorsal) nerve root –

 • Anterior (ventral) nerve root -

Internal Spinal Cord Anatomy

• Butterfly (H) -shaped spinal ______matter is surrounded by tracts of white matter; ________ – filled with CSF; seen in center of spinal cord

• **Anterior (ventral) horn** – motor neurons to skeletal muscle

• **Posterior (dorsal) horn** – sensory information

• **Lateral horn** – motor, visceral efferent (ANS)

→ **Module 12.5: Role of the CNS in Sensation**

General Somatic Senses

• **Role of Cerebral Cortex in Sensation, S1 and Somatotopy**:

 ________ relays most incoming information to **primary somatosensory cortex** (S1) in postcentral gyrus
Each part of body is represented by a specific region of S1, a type of organization called ____________

More S1 space is dedicated to hands and face; represents importance of manual dexterity, facial expression, and speech to human existence

Phantom Limb Pain

- **Phantom limb** – occurs after amputation of limb, digit, or even breast; patients perceive body part is still present and functional in absence of sensory input; small percentage develop **phantom pain** (burning, tingling, or severe pain) in missing part

- Difficult to treat due to complex way CNS processes pain; supports idea that S1 has “map” of body that exists independently of PNS

- Over time, map generally rearranges itself so body is represented accurately; phantom sensations decrease

→ **Module 12.6: Role of the CNS in Voluntary Movement**

Role of Brain in Voluntary Movement

- **Role of Cerebral Cortex** in Voluntary Movement:

 Primary motor cortex is organized somatotopically; certain body regions have disproportionately more cortical area devoted to them (especially lips, tongue, and hands); signifies importance of vocalization and manual dexterity to human survival

Parkinson's Disease

- One of most common movement disorders

- **Hypokinetic** = movement is difficult to initiate and once started, difficult to terminate

- **Symptoms** – minimal facial expression, shuffling gait, no arm swing, resting tremor

- **Cause** – degeneration of ____________ -secreting neurons of substantia nigra; genetics suspected in ~10% of cases

- **Treatment** – medications that increase level of dopamine
Module 12.7: Role of the CNS in Maintenance of Homeostasis

Role of CNS in Maintenance of Homeostasis

___________ is defined as maintenance of a relatively stable internal environment in face of ever-changing conditions

- **Homeostatic functions** include maintaining fluid, electrolyte, and acid-base balance; BP; BG and [O₂]; biological rhythms; and body temperature

Endocrine system secretes ____________ into blood; regulates functions of other cells (long term)

Nervous system sends ____________ ____________; excite or inhibit target cells (immediate)

Homeostasis of Vital Functions

- **Autonomic nervous system** (_______)
 - Maintain vital functions (HR, BP, digestion)
 - Although ANS is a component of PNS, mainly controlled by hypothalamus

- _____________ is one of few vital functions not under ANS control; regulated by Pons and Medulla

- **Body Temperature** – reg. by _____________

Fever

- Elevation of body temperature can accompany variety of infectious and noninfectious conditions

- Due to _____________ (chemicals) secreted by cells of immune system and by certain bacteria; cross BBB and interact with hypothalamus (control temp.)

- Pyrogens increase hypothalamic set point to higher temperature; feedback loop triggers shivering and muscle aches due to increased muscle tone; VC of blood vessels to skin

- _____________ (acetaminophen and aspirin)- work by blocking formation of pyrogens; hypothalamus returns to normal set point
Dementia

- Patients with dementia exhibit a progressive loss of recent memory, degeneration of cognitive functions, and changes in personality

- No proven method for prevention or cure of dementia exists; some drugs may slow progression of Alzheimer’s disease in certain patients but do not reverse changes that already exist; ineffective in other forms of dementia

- Common (most to least) forms of dementia include:
 - Neurofibrillary tangles (aggregates of proteins in neurons), senile plaques (extracellular deposits of specific protein around neurons)
 - Vascular dementia
 - Lewy body dementia
 - Pick’s disease

Learning and Memory

Two basic types of memory:

1. __________ (fact) – readily available to consciousness

 ex. – phone number, a quote, or pathway of corticospinal tracts

2. __________ (procedural or skills) – unconscious association

 ex. – how to enter phone number on a phone, how to move your mouth to speak, and how to read this chapter

- Declarative and nondeclarative memory classified by length of storage time

 __________ memory – stored only for a few seconds; is critical for carrying out normal conversation, reading, and daily tasks

 __________ (working) memory – stored for several minutes; allows you to remember and manipulate information with a general behavioral goal in mind

 __________ memory – a more permanent form of storage for days, weeks, or even a lifetime
Chapter 13: The Peripheral Nervous System

PNS:

1. ___________ (Afferent)
 a. Somatic Sensory Div. (special senses, skin, skeletal muscle)
 b. Visceral Sensory Div. (viscera)

2. ___________ (Efferent)
 a. Somatic Motor Div. (to skeletal muscle)
 b. Visceral Motor Div. (ANS)

→ Module 13.1: Overview of the Peripheral Nervous System

Overview of Peripheral Nerves and Associated

- **Peripheral nerves** = axons of many neurons bound together by CT
 ___________ nerves – contain both sensory and motor neurons

 Sensory nerves –

 Motor nerves -

 2 types of nerves:

 Spinal nerves (___________)

 Cranial nerves (___________)

- **Spinal nerves**

 ___________ (ventral) root - motor neurons from anterior horn

 ___________ (dorsal) root - sensory neurons from posterior horn

 ___________ _____________ - collection of cell bodies of sensory neurons

- Structures associated with spinal nerves: **Epineurium** – outermost layer of CT, holds motor and sensory axons together

 ___________ – CT that surrounds **fascicles** (bundles of axons)

 ___________ – CT surrounds individual axon
Module 13.2: The Cranial Nerves

The Sensory Cranial Nerves

- Sensory only cranial nerves:

 _________ (I)
 _________ (II)
 _________ (VIII)

The Motor Cranial Nerves

Oculomotor (III) – 4 of extraocular muscles, pupil constriction, opens eyelid, lens shape

___________ (IV) – 1 of extraocular muscles (sup. oblique)

___________ (VI) – 1 of extraocular muscles (lat. rectus)

Accessory (XI) – larynx, trapezius, SCM

Hypoglossal (XII) – tongue muscles

The Mixed Cranial Nerves

___________ (V) – supplies skin of face, muscles of mastication

___________ (VII) – facial expressions, taste ant. 2/3 tongue

Glossopharyngeal (IX) – taste post. 1/3 tongue, BP changes, swallowing, salivary glands

___________ (X) – thoracic and abdominal viscera, main nerve of PSN

Trigeminal Neuralgia (tic douloureux)

- Chronic pain syndrome

- Involves one or more branches of trigeminal nerve (CN V)

 - Certain stimuli may trigger attacks (chewing, light touch, vibrations)

 - Cause: idiopathic

 - Treatment: pain medications, sever nerve
Bell’s Palsy

Facial nerve (CN VII)

- Cause: virus, tumor, trauma, or idiopathic
- Weakness or complete paralysis of facial muscles (unilateral)

Treatment - anti-inflammatory medication, antiviral medication, PT, and surgery; even without treatment,

Many individuals recover function of paralyzed muscles in about 3 weeks

→ Module 13.3: The Spinal Nerves

Structure of Spinal Nerves and Spinal Nerve Plexuses

Cervical Plexus

-

Brachial Plexus

-

- Musculocutaneous n.
- Median n.

Lumbar Plexus

- Obturator n.

Sacral Plexus

-
A Hiccup Cure That Really Works

- **Hicups** – spasms of diaphragm that cause a forceful inhalation of air

- **Phrenic nerve remedy:**
 - Place fingers ~ 1 cm lateral to vertebral column level of C3-C5
 - Apply firm pressure to muscles of neck that overlie phrenic nerve until hiccups stop, in about 5–10 seconds

Lumbar Plexus

- Left and right lumbar plexuses are derived from anterior rami of L₁–L₅; anterior to vertebrae; embedded deep within psoas muscle; branches innervate pelvic structures and lower extremity after splitting into 2 divisions

→ **Module 13.4: Role of PNS in Sensation**

Classification of Sensory Receptors

- Based on location of stimuli they detect:
 - ________ – detect stimuli originating from outside body (thermoreceptors, chemoreceptors, photoreceptors)
 - ________ – detect stimuli originating from within body itself (chemoreceptors)
 - ________ - depolarize in response to anything that mechanically deforms tissue (vibration, light touch, stretch, and pressure)

- **Merkel cell fibers**

 Found in epidermal ridges of especially fingertips
 Detect discriminative touch stimuli (object form and texture)

- **Tactile corpuscles** (___________ corpuscles)

 Dermal papillae

- **Ruffini endings**
• Lamellated corpuscles (__________ corpuscles)

Module 13.6: Reflex Arcs: Integration of Sensory and Motor Function

Reflex Arcs

• Reflexes – pre-programmed, automatic responses to stimuli; ____________ arc; usually protective negative feedback loops

Reflexes begin with a sensory stimulus and finish with a rapid motor response

Neural integration between sensory stimulus and motor response occurs in CNS, at spinal cord or brainstem

Types of Reflexes

• Reflexes can be classified by at least two criteria:

 Number of synapses that occur between neurons involved in arc

 Type of organ in which reflex takes place, either visceral or somatic

• Simplest reflex arcs (__________ reflexes) involve only a single synapse within spinal cord between a sensory and motor neuron; more complicated types of reflex arcs (__________ reflexes) involve multiple synapses

 ▪ Simple stretch reflex

 Body’s reflexive response to stretching of muscle to shorten it back to within its “set” optimal length

 ▪ Flexion (withdrawal) reflex:
Amyotrophic Lateral Sclerosis

- degeneration of cell bodies of motor neurons in anterior horn of SC, upper motor neurons in cerebral cortex; cause of degeneration is unknown at present; many factors likely play a role

- Most common early feature of disease is muscle weakness, particularly in distal muscles of limbs and hands; over time weakness spreads to other muscle groups; upper motor neuron symptoms also develop

- Death usually in ~5 years of disease’s onset

- Although intensive research efforts are ongoing, at this time there is no cure or treatment that prevents disease progression
Chapter 14: The Autonomic Nervous System and Homeostasis

ANS = involuntary arm of **PNS**

- two divisions:
 - __________ (SNS)
 - __________ (PSN)
- maintain **homeostasis**

→ **Module 14.1: Overview of the Autonomic Nervous System**

<table>
<thead>
<tr>
<th>Comparison of Somatic and Autonomic Nervous Systems</th>
</tr>
</thead>
</table>

- Motor divisions of PNS:
 - __________ __________ division → **skeletal muscle** (conscious control)
 - __________ motor division → **smooth** muscle, **cardiac** muscle, and glands (involuntary)

- ANS motor neurons require a two-neuron circuit:
 1. Preganglionic neuron –
 2. Postganglionic neuron –

Divisions of the ANS

Main structural and functional differences between **SNS** and **PSN**:

- __________ nervous system – preganglionic axons are usually short and postganglionic axons are usually long

- __________ nervous system – preganglionic parasympathetic axons are long while postganglionic axons are short

Sympathetic nervous (SNS)

- **thoracolumbar division**
- **Sympathetic ganglia** located near SC
- “__________” division of ANS; prepares body for emergency situations
Parasympathetic nervous system

- Craniosacral division
- Cranial nerves → head and neck, thoracic viscera, and most abdominal viscera
- “_________________” division; role in digestion and maintain body’s homeostasis at rest
- Postganglionic neurons located near target organ; requires only a short axon to connect

Module 14.2: The Sympathetic Nervous System

Effects of SNS on Target Cells

Effects of SNS on target cells:
- directed at ensuring survival and maintenance of homeostasis during time of physical or emotional stress
 - Cardiac muscle cells → Increase _______ and force of contraction
 - _______ of blood vessels → digestive, urinary, & integumentary
 - Dilation of _________
 - _____ to skeletal & cardiac muscle
 - Constriction of sphincters → urinary & digestive
 - Relaxation of smooth muscle of digestive tract
 - Dilation of _________
 - ____________ sweating

Module 14.3: The Parasympathetic Nervous System

“_________________” division of ANS
- Role in maintenance functions - digestion and urine formation
- Craniosacral division
• PSN cranial nerves – oculomotor (CN III), facial (CN VII), glossopharyngeal (CN IX), and vagus (CN X) nerves

Effects of PSN on Target Cells

- Cardiac muscle cells - ____________ HR & BP

- SMC contraction along digestive tract – increased ____________
 - _________ of digestive and urinary sphincters \(\rightarrow\) promotes urination and defecation

Engorgement of penis or clitoris

___________ salivation, lacrimation, and digestive enz.

→ Module 14.4: PNS Maintenance of Homeostasis

Interactions of Autonomic Divisions

- Sympathetic and parasympathetic divisions work together to keep many of body’s functions within their normal homeostatic ranges

dual innervation

Dual innervation allows SNS to become dominant and trigger effects that maintain homeostasis during physically demanding periods

PSN division regulates same organs, preserving homeostasis between periods of increased physical activity

Postural Orthostatic Tachycardia Syndrome (POTS)

- Increase in heart rate (known as tachycardia) when an individual moves from lying or sitting down to standing up; VD \(\rightarrow\) BP drop due to drop due to gravity

Symptoms (from low blood pressure)

- include dizziness and lightheadedness
- fatigue and thirst
- shortness of breath, chest pain, cold extremities, and muscle weakness
Cause: excessive SNS activity

Treatment: dietary modifications such as increasing water and salt intake