Lecture Outline: **NERVOUS SYSTEM**
[Chapters 10, 11, 12]

Introduction

Neural Tissue Types:
- Neurons –
- Neuroglial Cells -

Divisions

1. Central Nervous System (CNS)
 Parts:

 Functions: analyze, evaluate, integrate →

2. Peripheral Nervous System (PNS)
 Nerves:

 A. Divisions of PNS

 1. Sensory Division (afferent)
 Receptors –

 2. Motor Division (efferent)
 Effectors –

 Motor Division consists of:
 Somatic –
 Autonomic –

B. Nervous System Functions

 Sensory Function:
 -
 -

 Integrative Function
 -
 -
Motor Function

The Neuron
Neurons are specialized to react to chemical and physical changes in their surrounds and conduct impulses in response to these changes

A. Structures of the Neuron
1. Cell body (soma)
 -
 - perikaryon
 - Nissl bodies
 *

2. Dendrites
 -

3. Axon
 - ends at synaptic terminal
 - initial segment:
 - axon hillock:

Myelination of Axons
White matter
 -

Gray matter
 -
Bio 103 Nervous System

B. Classification of Neurons
 1. Structure
 - based on number of cytoplasmic extensions
 a. Bipolar neurons
 -
 -
 b. Unipolar neurons
 -
 -
 c. Multipolar neurons
 -
 -

 2. Function
 - based on function
 a. Sensory neurons
 - afferent
 - carry impulses to CNS
 -
 -
 b. Interneurons
 - link neurons
 -
 -
 c. Motor neurons
 -
 - carry impulses away from CNS
 - carry impulses to effectors
 -

Neuroglial Cells
 A. PNS neuroglia
 1. Schwann Cells
 - produce myelin found on peripheral myelinated neurons
 -
2. Satellite Cells
 - support clusters of neurons cell bodies (ganglia)

B. CNS neuroglia
 1. Astrocytes
 -
 - regulates ion concentration
 - connect neurons to blood vessels
 -

 2. Oligodendrocytes
 -
 - provides myelin for many axons

 3. Microglia
 -
 - proliferate where brain or spinal cord is injured to diseased

4. Ependyma
 - ciliated
 - line central canal of spinal cord
 -

C. Neural Response to Injury
 *

 1. Macrophages remove fragments of myelin and other cellular debris

 2. Neuroglial cells secrete __________

 3. Axon is stimulated to develop a sprout which may grow into a tube formed by connective tissue

 4. Schwann cells proliferate and ________
The Synapse:
* nerve impulses pass from neuron to another cell at the synapse
 - presynaptic cell
 - postsynaptic cell

neuro-neuronal junction:
NMJ:
neuroglandular junction:

Synaptic transmission:

Neurophysiology

A. Transmembrane potential

 1. Passive forces:
 Chemical gradients:
 ECF
 ICF

 Electrical gradients:
 Positive charge
 Negative charge

 Resting membrane potential = -70 mV
 - due to

 2. Active forces:
 Sodium-Potassium exchange pump
 - exchange of 3 Na+ for every 2 K+
 [moves 3 Na+ out of the cell; moves 2 K+ into the cell; uses ATP as energy source to move these ions]
 - used to maintain the resting potential (________)
B. Local Potential Changes
Caused by:

-
-
-

* environmental changes affect the membrane potential by opening a gated ion channel

Graded (or local) Potentials
- do not spread far from site of stimulus

Threshold stimulus
- a local potential that is strong enough to start an action potential

Depolarization -

Hyperpolarization -

Repolarization -

C. Action Potentials
1. At rest the membrane is ____________

2. Threshold stimulus is reached

3. Sodium channels _____ and membrane ______________

4. Potassium leaves cytoplasm and membrane ______________

D. All-or-None Response
If a neuron responds at all, it responds completely

A nerve impulse is conducted whenever a stimulus of threshold Intensity or above is applied to an axon

All impulses carried on an axon are the ______________

E. Refractory Period
1. Absolute –

2. Relative -
Bio 103 Nervous System

F. Na+/K+ exchange pump
 Over time this pump will return ions to their prestimulation levels on appropriate side of membrane

 \[\text{Na}^+ \rightarrow \underline{\text{_____}} \text{ are pumped } \underline{\text{_____}} \text{ of the cell} \]

 \[\text{K}^+ \rightarrow \underline{\text{_____}} \text{ are pumped } \underline{\text{_____}} \text{ the cell} \]

G. Propagation (or conduction) of AP
 1. Continuous propagation:
 - chain reaction that spread AP along every part of the cell membrane
 - occurs on \underline{\text{______________}}
 - 1m/sec

 2. Saltatory propagation:
 - jumping of AP from \underline{\text{_______}} to \underline{\text{_________}} in myelinated fibers

H. Axon Diameter
 1. Type A fibers
 -
 -

 2. Type B fibers
 -
 -

 3. Type C fibers
 -
 -

Neurotransmitters
 Synaptic transmission: Chemical Synapses

 \text{presynaptic neuron} \rightarrow \text{synaptic cleft} \rightarrow \text{postsynaptic neuron}

 Neurotransmitters can be excitatory or inhibitory
 \[E \rightarrow \]
 \[I \rightarrow \]
Acetylcholine (ACh)
 -
 -

Norepinephrine (NE)
 - adrenergic synapses
 - released at most SNS post-ganglionic fibers

Dopamine
 -

Serotonin
 - not enough may cause depression
 - SSRI

GABA (gamma aminobutyric acid)
 - inhibitory
 -

Neuromodulators:
 Endorphins -

Impulse Processing
The way the nervous system processes impulses and acts upon them

Neural Pools
- groups of interneurons that make synaptic connections with each other
- interneurons work together to perform a common function
- each pool receives input from other neurons
- each pool generates output to other neurons

Convergence
- neuron receives input from ____________
- incoming impulses represent information from different types of sensory receptors
- allows nervous system to collect, process, and respond to info
- makes it possible for a neuron to sum impulses from different sources
Divergence
- one neuron sends impulses to ___________
- can amplify an impulse
- impulse from a single neuron in CNS may be amplified to activate enough motor units needed for muscle contraction

Nervous System Structure
1. PNS =
 Nerves -
 Ganglia –

2. CNS =
 Tract (column) -
 Nucleus (center) -

A. Meninges
- Membranes surrounding ___________
- 3 Layers:
 1. Dura mater
 2. Arachnoid mater
 3. Pia mater

Organization of the spinal meninges:

 Epidural space

 Dura mater

 Arachnoid

 Subarachnoid space

 Pia mater
B. Ventricles
 1. Interconnected cavities within cerebral hemispheres and brain stem
 2. Continuous with central canal of spinal cord
 3.
 Lateral ventricles
 Third ventricle
 Fourth ventricle
 Cerebral aqueduct

C. Cerebrospinal Fluid
 - Secreted by choroid plexus (__________)
 - Circulates in ventricles, central canal of the spinal column, and subarachnoid space
 - clear liquid that provides ____________ and ____________
 - helps maintain stable ion concentrations in CNS

 Hydrocephalus:
 - blocked ______________
 - excess production of CSF
 - treatment: hydrocephalic shunt

D. Spinal Cord
 1. Slender column of nervous tissue continuous with the brain
 2. Extends downward through vertebral canal
 3.

 Functions:
 - center for spinal reflexes
 - conduit for nerve impulses to and from the brain

 Tracts:
 - ascending tracts –
 - descending tracts –
Reflex arcs:
Reflexes – automatic, subconscious responses to stimuli within or outside the body

Pathway:
Receptor
Afferent (sensory) neuron
CNS
Efferent (motor) neuron
Effector

Reflex Behavior:
Patellar reflex
 -
 -
Withdrawal reflex
 -
 -

Brain
Functions:
- interprets sensations
- determines perception
- stores memory
- reasoning
- make decisions
- coordinates muscular movements
- regulates visceral activities
- determines personality
Bio 103 Nervous System

Major Parts of the brain:
-
-
-
-
-

A. Structure of Cerebrum
 1. corpus callosum connects cerebral hemispheres (left and right)
 2.
 3.
 4. longitudinal fissure –
 5. transverse fissure separates cerebrum from cerebellum

B. Functions of the Cerebrum
- interpreting impulses
- initiating voluntary movements
- storing information as memory
- retrieving stored information
- reasoning
- seat of intelligence and personality

C. / D. Lobes of Cerebral Hemispheres and Functions
 1. Frontal
 2.
 3. Temporal
 4.
E. Functional Regions of Cerebral Cortex

Cerebral cortex – thin layer of gray matter that constitutes the outermost portion of cerebrum

1. Sensory Areas
 - Cutaneous Area
 - Visual Area
 - Auditory Area
 - Area for Taste
 - Area for Smell

2. Association Areas
 - regions that are not primary motor or sensory areas
 - widespread throughout the cerebral cortex
 - analyze and interpret sensory experiences

 Frontal Lobe Association Areas:
 -
 -
 -

 Parietal Lobe Association Areas:
 -
 -

 Temporal Lobe Association Areas:
 -
 -

 Occipital Lobe Association Areas:
 -
Memory (association area)

Short Term
- working memory
- closed neuronal circuit
- circuit is stimulated over and over

Long Term
- changes structure of function of neurons
- enhances synaptic transmission

3. **Motor Areas**
 Primary Motor Areas:
 -
 -

 Broca’s Area:
 -
 -
 -

 Frontal Eye Field
 -
 -

F. Basal Nuclei
- masses of gray matter
- deep within cerebral hemispheres
- produce ____________
- control certain muscular activities primarily by inhibiting motor functions

G. Diencephalon
- Area between cerebral hemispheres and above the brainstem
- Surrounds third ventricle
- Includes: thalamus, hypothalamus, ____________, optic chiasma, Infundibulum, posterior pituitary, Mammillary bodies, and ____________
Thalamus
- gateway for sensory impulses heading to cerebral cortex
- channels impulses to appropriate part of cerebral cortex for interpretation

Hypothalamus
- maintains homeostasis by regulating visceral activities

H. Brain Stem
3 Parts:
1. contains bundles of fibers that join lower parts of brainstem and spinal cord with higher part of brain
 - cerebral aqueduct
 - corpora quadrigemina –
2. rounded bulge on underside of brainstem
 -
3. relays nerve impulses to and from medulla oblongata and cerebellum
 - conducts ascending and descending impulses between brain and spinal cord
 - contains cardiac, vasomotor, and respiratory control centers
 - contains various non-vital reflex control centers
Bio 103 Nervous System

I. Cerebellum
- inferior to occipital lobes, posterior to pons and medulla oblongata
- cerebellar cortex –
- arbor vitae –
- integrates sensory information concerning position of body parts

A. Peripheral Nervous System (PNS)
1. somatic fibers connecting to the skin and skeletal muscles
 - autonomic fibers connecting to viscera
2. somatic fibers connecting to the skin and skeletal muscles
 - autonomic fibers connecting to viscera

B. Structure of Peripheral Nerve
 Connective tissue coverings:
 Epineurium –
 Perineurium –
 Endoneurium –

C. Nerve Fiber Classification
1. ________________ (afferent) conduct impulses into brain or spinal cord
 General visceral afferent fibers – carry sensory impulses to CNS from blood vessels and internal organs
 General somatic afferent fibers – carry sensory impulses to CNS from skin and skeletal muscles
2. ________________ (efferent) conduct impulses to muscles or glands
Bio 103 Nervous System

General somatic efferent fibers – carry motor impulses from CNS to skeletal muscles

General visceral efferent fibers – carry motor impulses away from CNS to smooth muscles and glands

3. Mixed Nerves – contain both __________ nerve fibers and __________ nerve fibers

Special somatic efferent fibers
- carry motor impulses from brain to muscles used in chewing, swallowing, speaking, and forming facial expressions

Special visceral afferent fibers
- carry sensory impulses to brain from olfactory and taste receptors

Special somatic afferent fibers
- carry sensory impulses to brain from receptors of sight, hearing, and equilibrium
D. Cranial Nerves - 12 Pair

<table>
<thead>
<tr>
<th>Name</th>
<th>Major Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. OLFATORY</td>
<td>S only: Smell</td>
</tr>
<tr>
<td>II. OPTIC</td>
<td>S only: Sight</td>
</tr>
<tr>
<td>III. OCULOMOTOR</td>
<td>S: Receptors that influence pupil size</td>
</tr>
<tr>
<td></td>
<td>M: Muscles that move eye</td>
</tr>
<tr>
<td></td>
<td>(except sup. oblique, lat. rectus)</td>
</tr>
<tr>
<td>IV. TROCHLEAR</td>
<td>S: Muscle sense (eye muscles)</td>
</tr>
<tr>
<td></td>
<td>M: Superior oblique eye muscle</td>
</tr>
<tr>
<td>V. TRIGEMINAL</td>
<td>S: Sensations of head, face</td>
</tr>
<tr>
<td></td>
<td>M: Muscles of mastication</td>
</tr>
<tr>
<td>VI. ABDUCENS</td>
<td>S: Muscle sense (eye muscles)</td>
</tr>
<tr>
<td></td>
<td>M: Lateral rectus eye muscle</td>
</tr>
<tr>
<td>VII. FACIAL</td>
<td>S: Tastebuds (anterior 2/3 tongue)</td>
</tr>
<tr>
<td></td>
<td>M: Muscles for facial expressions</td>
</tr>
<tr>
<td>VIII. VESTIBULOCOCHLEAR (or AUDITORY)</td>
<td>S only: Sense of balance, hearing</td>
</tr>
<tr>
<td>IX. GLOSSOPHARYNGEAL</td>
<td>S: Tastebuds (posterior 1/3 tongue)</td>
</tr>
<tr>
<td></td>
<td>Detects BP in the carotid arteries</td>
</tr>
<tr>
<td></td>
<td>M: Muscles for swallowing</td>
</tr>
<tr>
<td>X. VAGUS</td>
<td>S: Pharynx, thoracic & abdominal viscera</td>
</tr>
<tr>
<td></td>
<td>M: Major PSN nerve to thoracic & abdominal viscera</td>
</tr>
<tr>
<td>XI. ACCESSORY (SPINAL)</td>
<td>S: Proprioception from head, neck, shoulder muscles</td>
</tr>
<tr>
<td></td>
<td>M: Head and shoulder movements</td>
</tr>
<tr>
<td>XII. HYPOGLOSSAL</td>
<td>S: Proprioception from tongue</td>
</tr>
<tr>
<td></td>
<td>M: Tongue movement and swallowing</td>
</tr>
</tbody>
</table>

*S = sensory function
M = motor function*
E. Spinal nerves
* Mixed nerves

31 pairs exit through intervertebral foramina

- 8 pr. cervical nerves
- 12 pr. thoracic nerves
- 5 pr. lumbar nerves
- 5 pr. sacral nerves
- 1 pr. coccygeal nerves

31 pair spinal nerves

Dorsal Root (posterior or sensory root)
- axons of sensory neurons

Dorsal root ganglion
- cell bodies of sensory neurons whose axons conduct impulses inward from peripheral body parts

Ventral root (anterior or motor root)
- axons of motor neurons whose cell bodies are in spinal cord

Spinal Nerve – union of ventral and dorsal roots

Nerve Plexus – complex networks formed by anterior branches of spinal nerves
- fibers of various spinal nerves are sorted and recombined

1. Cervical Plexuses
(C1 - C5)
C1 – C4 lies deep in the neck
- supplies muscles and skin of the ____________

C3 – C5 contribute to the ________________
2. Brachial Plexuses
 C5 - T1 - innervates shoulder / upper arm

 Musculocutaneous nerve – muscles of the anterior arms and skin of forearms

 Ulnar and Median nerves – supply muscles of forearms and hands

 Radial nerve – supply posterior muscles of arms and skin of forearms and hands

 Axillary nerve – supply muscles and skin of anterior, lateral, and posterior arms

3. Lumbosacral Plexuses
 T12 – S5
 - extends from lumbar region into pelvic cavity

 Obturator nerve – supply motor impulses to adductors of thighs

 Femoral nerve – supply motor impulses to muscles of anterior thigh and sensory impulses from skin of thigh and legs

 Sciatic nerve – supply muscles and kin of thighs, legs, feet

A. Autonomic Nervous System (ANS)
 - functions without conscious effort
 - controls visceral activities
 - regulates –

 Two Divisions:
 1. Sympathetic (SNS) -
 - strongly stimulated by stress →

 2. Parasympathetic (PSN) -
 - Rest and repose
SNS Stimulation Responses:
- Dilates pupils
- Contracts arrector pili muscles
- VC vessels in skin and viscera
- Dilates vessels in skeletal and cardiac muscles

- Secretion of epinephrine
- Glucose is released from liver into blood
- Dilation of bronchioles

PSN Stimulation Responses:
- Elimination of waste
- Increases digestive activity

- Relaxation of bladder sphincters

- Dilates vessels to external genitalia

Control of Autonomic Activity
- Controlled largely by CNS

- Medulla oblongata regulates –
- Hypothalamus regulates –
- Limbic system and cerebral cortex control emotional responses
Life Span Changes
- Brain cells begin to die before birth
- Over average lifetime, brain shrinks 10%
- By age 90, frontal cortex has lost half its neurons
- Number of dendritic branches decreases
- Decreased levels of neurotransmitters
- Slowed responses and reflexes
- Changes in sleep patterns that result in fewer sleeping hours

Clinical Applications: Cerebral Injuries and Abnormalities
Concussion

Cerebrovascular Accident

Cerebral Palsy

Parkinson's Disease