Lecture Outline: **MUSCULAR SYSTEM** [Chapter 9]

A. Functions of Skeletal Muscle

- 1. Movement
- 2. Maintain posture
- 3. Support
- 4. Guard openings
- 5. Maintain body temperature (thermogenesis)

B. Muscle Tissue Types

- 1. Skeletal
- 2. Smooth
- 3. Cardiac

C. Structure of a Skeletal Muscle

Skeletal Muscle: organ of the muscular system

_

-

_

- dense connective tissue, separates adjacent muscles, holds muscles in position
- collagen fibers of endomysium, perimysium, and epimysium

Aponeuroses -

D. Connective Tissue Coverings

- 1. Epimysium
- 2. Perimysium Fascicle
- 3. Endomysium

Skeletal Muscle Organization

- 1.
- 2.
- 3.
- 4.
- 5.

= thick and thin filaments

E. Skeletal Muscle fiber = muscle cell

Sarcolemma

Sarcoplasm

Sarcoplasmic reticulum (SR)

Transverse tubules (T-tubules)

Myofibrils

Myofilaments

Thin filaments

Actin -

Troponin -

Tropomyosin -

Thick filaments

Myosin -

Sarcomere = functional unit

I bands -

A bands -

H zone -

Z lines -

M line -

F. Sliding Filament Theory

- * thin filaments slide past the thick filaments ==>
 - H zones and I bands narrow
 - Z lines move closer together
 - A band width does not change

Muscle Contraction

Nervous system controls muscle contraction

Neuromuscular Junction (NMJ) or Myoneural Junction

Motor neuron -

Synapse -

Synaptic cleft -

Motor end plate -

Synaptic vesicles -

Acetylcholine (ACh) - neurotransmitter

Motor Unit

= all muscle fibers associated with single motor neuron

Precise movements

Less precise control

A. :	Sti	mul	us i	for	Cont	traction
------	-----	-----	------	-----	------	----------

 Nerve impulse (AP) travels along axon
2. ACh released from
3. ACh diffuses across
4. ACh binds to ACh receptors on
5. Na ⁺ influx into sarcoplasm generating a muscle impulse
6. Muscle impulse travels along T-tubules to
B. Excitation Contraction Coupling 1. SR releases Ca ⁺² into
2. Ca ⁺² binds to to change its shape
3. Position of tropomyosin is altered
4. Binding sites on actin are exposed
5. Actin and myosin molecules bind forming a cross-bridge
 C. Cross-bridge Cycling Myosin cross-bridge pulls filament ADP and P are released from myosin New binds to myosin causing the cross-bridge to detach Myosin head is reset to original position
Myosin head is reset to original position

D. Relaxation

- 1. Acetylcholinesterase () breaks down ACh
- 2. ATP breaks cross-bridge attachments
- 3. $Ca^{+2} \rightarrow SR \text{ (via AT)}$
- 4. Troponin is reactivated preventing myosin and actin from binding

*

Rigor Mortis

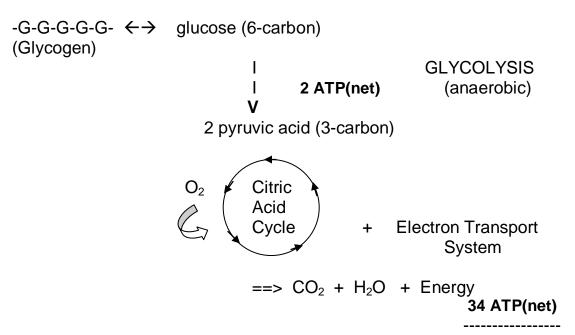
In living, resting muscle, normally ATP sits on head of myosin.

ATP ---> ADP + P + E in order for the power stroke to occur.

If no ATP available (as in death) → cross-bridges cannot break.

A. What Supplies the Energy?

1.


2.

Creatine phosphate -

B. Cellular Respiration

- 1. Anaerobic Phase
 - -
 - produces 2 ATP
- 2. Aerobic Phase
 - citric acid cycle
 - _
 - produces 34 ATP
 - myoglobin stores extra oxygen

Anaerobic and aerobic respiration produces a total of _____

Total: 36 ATP/glucose molecule

C. Oxygen Debt

= amount of oxygen needed by liver cells to use the accumulated lactic acid to produce glucose

Anaerobic Respiration Drawbacks Glycolysis -Accumulation of lactic acid

Muscle Fatigue

- inability to contract

Caused from:

Cramp – sustained, involuntary muscle contraction

D. Energy Use

- 1. Resting muscle
 - low energy demands
 - O₂ available
 - buildup of CP and glycogen
- 2. Moderate activity
 - energy demand increases
 - incr. O2 use and incr. ATP output
 - no surplus of ATP
- 3. Peak activity levels
 - max. mitochondrial ATP production (produces 1/3 of ATP)
 - rate limited by O₂ available
 - 2/3 ATP produced via

Heat Production

- by-product of cellular respiration
- muscle cells are major source of body heat

_

A. Muscular Responses

Threshold stimulus -

Twitch – single stimulus → contraction followed by relaxation

- Latent period time needed for AP → sarcolemma; Ca⁺² released from SR
- 2. Contraction phase -
- 3. Relaxation phase -

B. Summation

- process by which individual twitches combine
- produces sustained contractions
- can lead to _____ contractions

- 1. Treppe
- 2. Wave Summation
- 3. Incomplete Tetanus
- 4. Complete Tetanus

Infectious disease: Tetanus ("lockjaw")

- Clostridium tetani

A. Recruitment of Motor Units

Recruitment -

- Whole muscle composed of many motor units
- An intensity of stimulation increases, recruitment of motor units continues until all motor units are activated

B. Sustained Contractions

Smaller motor units -

Larger motor units -

Muscle tone – continuous state of partial contraction =

C. Types of Contractions

- 1. Isotonic
 - a. Eccentric -
 - b. Concentric -
- 2. Isometric -

Fast and Slow Twitch Muscle Fibers

Slow-twitch fibers (type I)

-

-

-

_

Fast-twitch glycolytic fibers (type IIa)

-

_

Fast-twitch fatigue resistant fibers (type IIb)

-

-

-

_

Muscle hypertrophy and atrophy

Hypertrophy -

_

Atrophy -

_

A. Smooth Muscle Tissue

1. Structural differences

-

- filaments: actin & myosin but no sarcomeres

. . - . .

- lacks T-tubules
- SR not well developed
- 2. Functional differences
 - control mechanism:
 - contraction:

3. Types of Smoo	oth Muscle
	nooth Muscle
	ers held together by gap junctions hibit rhythm city
- less - fund	nooth Muscle s organized ction as separate units ers function separately
4. Smooth Muscle Resembles - - -	e Contraction skeletal muscle contraction:
Different fro - - - - -	m skeletal muscle contraction
B. Cardiac Muscle Tis - located only in t - muscle fibers jo - fibers branch	

- longer refractory period than skeletal muscle -

Skeletal	Muscle	Actions
Or	iain:	

Insertion:

- prime mover (agonist) primarily responsible for movement
- synergists assist prime mover
- antagonist resists prime mover's action and cause movement in the opposite direction

Ex.	Pectoralis major	Biceps brachii
Origin:		

Life Span Changes

Insertion:

Action:

Clinical Disorders

Myasthenia gravis

Botulism

Polio

Whole Muscle Anatomy

A. Parts of muscle

Naming of muscle actions:

flexion extension

adduction abduction

- B. Naming of Muscles:
 - 1. action:
 - 2. direction:
 - 3. location:
 - 4. divisions:
 - 5. shape:
 - 6. attachment:
 - 7. Latin meanings: platymsa, buccinators, serratus, masseter, vastus

Exercise A:

Muscle Function Prentice-Hall Video Tutor

within a CT sheath are called
2. The cell membrane of a muscle cell is the
3. Each muscle fiber is composed of which run the entire length of the muscle cell.
4. Bundles of thick and thin filaments are organized into repeating units called
5. The repeating units (in #4) are joined at junctions called
6. Each thin filament is composed mostly of the protein
7. Thin filaments have the appearance of
8. Thin filaments also contain 2 proteins and that are important in the control of muscle contraction.
9. Thick filaments are composed of the protein
10. Each myosin is shaped like
11. To make up a thick filament, the of the myosin molecules are bundled together and the project outward in a spiral.
12. The region where and axon communicates with a muscle cell is called
13. The terminal process of the axon and the muscle fiber are separated by a small gap called
14. A neuron can control a muscle fiber by releasing a chemical called a into the gap between the neuron and the muscle fiber.
15. The stores the calcium ions.
16. When a muscle is at rest, molecules hold molecules against the actin strands.

Bio 103 Muscular System

	17.	The molecules (in thin filaments.	#16) block the binding sites on the	
	18.	When ar	e released from the SR, they attach to	
	19. The molecules rotate, moving the binding site			
	20.		ns when the head of a myosin s to a binding site on the actin	
	21.	When the muscle o	ontracts, the two ends of the sarcomere move	
Ex	ercise		Naming of Muscles:	
2. 3. 4. 5. 6.	Action Directi Location Division Shape: Attach Latin r	ion: on: ons: 		
Levator scapulae		ator scapulae	Triceps brachii	
	Glu	teus maximus	Quadriceps femoris	
	Tra	nversus abdominis	Sternocleidomastoid	
	Inte	rnal Oblique	Extensor carpi radialis	
	Rec	tus abdominis	Pectoralis major	
	Flex	or carpi ulnaris	Deltoid	
	Add	luctor longus	Trapezius	
	Bra	chialis	External oblique	
	Bice	eps brachii	Platysma	
	Buc	cinator	Vastus medialis	

Bio 103 Muscular System

Exercise C: More muscle tissue review

1.	Muscle tissue is made up of specialized cells for the function of	f
	·	

- 3. Skeletal muscles are called voluntary muscles because:
 - a. ATP activates skeletal muscle for contraction.

2. The three types of muscle tissue: _____, ____,

- b. Skeletal muscle contains the myoneural junction.
- c. They contract when stimulated by motor neurons of the CNS.
- d. CT harnesses generated forces voluntarily.
- 4. The smallest functional unit of the muscle fiber is ______.
- 5. Thin filaments consist of:
- 6. Thick filaments consist of:
- 7. All of the muscle fibers controlled by a single motor neuron make up a ______.
- 8. Tension in a muscle fiber will vary depending on:
 - a. Structure of individual sarcomeres.
 - b. Initial length of muscle fibers.
 - c. The number of cross-bridges formed within a fiber.
- 9. The reason there is less precise control over leg muscles compared to muscles of the eye is:
 - a. Single muscle fibers are controlled by many motor neurons.
 - b. Many muscle fibers are controlled by many motor neurons.
 - c. A single muscle fiber is controlled by a single motor neuron.
 - d. Many muscle fibers are controlled by a single motor neuron.
- 10. The sliding filament mechanism explains the *physical change* that takes place during contraction is:
 - a. Thick filaments slide toward center of sarcomere alongside the thin filaments.
 - b. Thick and thin filaments slide toward the center of the sarcomere together.
 - c. The thin filaments slide toward the center of the sarcomere alongside the thick filaments.