Chapter 6: Bone and Bone Tissue

Skeletal system
= __________, ___________, __________

Bones are main organs:
- osseous tissue
- dense regular and irregular CT, plus bone marrow

→ Module 6.1: Introduction to Bones as Organs

FUNCTIONS OF THE SKELETAL SYSTEM

• Functions:
 1. Protection

 2. Mineral storage and __________________________

 3. Blood cell formation: _______________ involved in formation of blood cells
 (hematopoiesis or hemopoiesis)

 4. Fat storage: in yellow bone marrow of _______________

 5. Movement: bones are sites for skeletal muscle attachment

 6. Support: supports weight and provides __________________

BONE STRUCTURE CLASSIFICATION
(based on shape)

1. Long bones
 - longer than they are wide;
 - include most bones in arms and legs

2. Short bones
 – roughly cube-shaped
 - include carpals and __________
3. Flat bones
 – thin and broad bones
 - ribs, pelvis, sternum and __________________

4. Irregular bones
 – include __________ and certain skull bones

5. Sesamoid bones
 – located within __________

BONE STRUCTURE

Structure of long bone:
 • Periosteum
 – membrane surrounds outer surface
 • Perforating fibers (Sharpey’s fibers)
 - anchors periosteum firmly to bone surface
 • Diaphysis – _________________
 • Epiphysis - _________ of long bone (proximal & distal)
 • Articular cartilage – hyaline cartilage
 • Marrow cavity – contains bone marrow (red or yellow)
 • Endosteum – thin membrane lining marrow cavity

Compact bone
- hard, dense outer region
- allows bone to resist stresses (compression & twisting)

Spongy bone (___________ bone)
- found inside cortical bone
- *honeycomb-like framework* of bony struts;
- resist forces from many directions

Epiphyseal lines
 – *separates* epiphyses from diaphysis
 - remnants of epiphyseal plates
• **Epiphyseal plates (__________ plates)**
 - hyaline cartilage found in developing bones of children

Structure of short, flat, irregular, and sesamoid bones
- covered by periosteum
- diploë = two outer layers of thin compact bone with middle layer of spongy bone
- sinuses = air-filled spaces _______________

Bone Marrow Transplantation
• Diseases of blood
• Needle is inserted into pelvic bone
• Recipient’s marrow is destroyed
• Complications –
 • Many recipients can return to a healthy life if transplant “takes”

➔ **Module 6.2: Microscopic Structure**

Extracellular matrix of bone:
• **Inorganic matrix** (65%)
 – consisting of __________ (hydroxyapatite salts of Ca & P)
• **Organic matrix** (35%)
 - osteoid
 - consists of collagen fibers and *usual ECM*

Bone cells :
• **Osteogenic** – differentiate into osteoblasts
• **Osteoblasts** – ______________
• **Osteocytes** – mature bone cells in lacunae
• **Osteoclasts**
 - bone __________
 - secrete acid and enzymes
Structure of compact bone:

Osteon (Haversian system)
- Lamellae = concentric rings of *thin layers of bone*
- Central canal = contains blood vessels & nerves
- Lacunae = _________ for osteocyte
- Canaliculi = __________
- Perforating canals (Volkmann’s canals) *perpendicular to central canals*

Structure of spongy bone
- usually not wt. bearing
- not organized into osteons
 ________________ = bony struts

→ Module 6.3: Bone Formation and Ossification

OSSIFICATION

• Ossification *(osteogenesis)*
 - Process of bone formation
 - Begins in embryonic period and continues throughout adulthood

[fetal “skeleton”]
Intramembranous Ossification

- **Intramembranous ossification**
 - forms many ____________ (bones of skull and clavicles)
 - formed within a mesenchymal ____________
 - spongy bone ossifies before outer compact bone layers
 - forms **primary ossification center**
 - ____________ = areas of incomplete intramembranous ossification

Endochondral Ossification

- **Endochondral ossification (Figure 6.12):**
 - Bone development for all bones below head except ____________
 - Many bones complete ossification by age 7

- **Endochondral ossification**
 - bones begin within **hyaline ____________**
 - Hyaline cartilage model made of chondrocytes, collagen, and ECM surrounded by CT **perichondrium**
 - Cartilage breaks down
 - Collar formation (periosteum)
 - ____________ **ossification center** mid-diaphysis
 - **secondary ossification centers** at ____________

Most bones of skeleton formed this way.

Osteoporosis and Healthy Bones

- Most common bone disease in U.S

- Diagnosed by **bone density measurement**

- **Causes** – **dietary** (calcium and/or vitamin D deficiency)

- Prevention

- Treatment
Module 6.4: Bone Growth in Length

Growth in Length

- Long bones lengthen via **longitudinal growth**; involves division of ______________ (not osteocytes or osteoblasts) in epiphyseal plate
- Bone growth takes place at epiphysis on side closest to diaphysis

Epiphyseal plate

1. **Zone of reserve cartilage** – (found closest to epiphysis) contains cells that are not directly involved in bone growth but can be recruited for cell division if need arises
2. **Zone of proliferation** - consists of actively dividing chondrocytes by endochondral ossification
3. **Zone of hypertrophy and maturation** (next region closer to diaphysis) contains mature chondrocytes
4. **Zone of calcification** (second to last region) contains dead chondrocytes, some of which have been calcified

 Calcified cartilage is replaced with bone.

5. **Zone of ossification** (last region) consists of calcified chondrocytes and osteoblasts

- Longitudinal growth continues at epiphyseal plate as long as mitosis continues in zone of proliferation:
 - Mitotic rate slows around ages of 12-15 years old
 - Between ages of 18-21 epiphyseal plate is closed

 - ________________ is a calcified remnant of epiphyseal plate

Growth in Width

Appositional growth = ________________

- Osteoblasts, lay down new bone
 - Appositional growth does not result in immediate formation of osteons; instead, new circumferential lamellae are formed
 - Bones may continue to increase in width even after epiphyseal plates have closed and bone is no longer lengthening
Achondroplasia

- Most common cause of **dwarfism**; gene defect

- Defective gene produces an **abnormal growth factor receptor**

- Bones form and grow abnormally

- Long-term problems

ROLE OF HORMONES IN BONE GROWTH

- **Somatotropin** (GH) – secreted by **anterior pituitary gland**; enhances protein synthesis and cell division in most all tissues, including bone

- **Somatotropin** - pronounced effect on bone growth:
 - Increases appositional growth in males
 - Increases **rate of mitosis in epiphyseal plate**; leads to “growth spurts” in teenage years

- **Estrogen** also plays a role in bone growth:
 - Increases **rate of longitudinal growth** and inhibits **osteoclasts**
 - Accelerates closure of epiphyseal plate at much **faster rate than testosterone**
 → **average height differences** between genders

Gigantism and Acromegaly

- *Excess GH* can produce two conditions, depending on when in life it develops; both generally caused by a ________ that secretes hormone

- **Childhood** – condition is __________

- **Adulthood** – condition is __________

Module 6.5: Bone Remodeling and Repair

BONE REMODELING

- **Bone remodeling** = new bone is formed by **bone** _________ and old bone is removed by **bone** _________
– Maintenance of calcium ion homeostasis
– Replacement of old brittle bone with newer bone
– Adaptation to tension and stress

• PTH (parathyroid hormone from parathyroid gland) stimulates effects that ___________
 blood Ca+2 levels
 - Increases osteoclast activity
 - Increases *absorption* of calcium from gut
 - Inhibits calcium *loss* in urine

• Calcitonin (from thyroid gland)
 - Causes __________ blood Ca+2 levels
 - Inhibits osteoclasts
 - Increases calcium loss in urine

Thyroid Gland Secretes __________

Parathyroid Glands Secretes __________

• Factors influencing bone remodeling are summarized:

Fractures:

– Simple fractures vs ___________ fractures
 - Spiral
 - Compression
 - Comminuted
 - Avulsion
 - Greenstick
 - Epiphyseal plate
Chapter 7: The Skeletal System

Skeletal System = _______ bones plus cartilages
- Axial (80 bones)
- Appendicular (126 bones)

Module 7.1: Overview of the Skeletal System

Axial skeleton
- Skull, vertebral column, thoracic cage (ribs, sternum), __________________

• Appendicular skeleton
 - Bones of pectoral girdle, upper limb, pelvic girdle, and lower limb

 Pectoral girdle – _______________; anchors upper limb to trunk
 Pelvic girdle – ________________ bones; anchors lower limb to trunk

Module 7.2: The Skull

• Skull = 22 bones organized in two groups:
 - Cranial bones – collectively known as cranium, composed of _____ bones
 (STEP OFF my skull)

 • Frontal -1
 • Occipital -1
 • Ethmoid -1
 • Sphenoid – 1
 • Parietal – 2
 • Temporal – 2
– **Facial bones** = _______ bones
 - Maxillary – 2
 - Zygomatic -2
 - Nasal -2
 - Lacrimal -2
 - Palatine -2
 - Inferior nasal concha -2
 - Mandible -1
 - Vomer -1

• Sinuses = ___________, membrane-lined spaces;
 paranasal sinuses = frontal, ethmoid, sphenoid, maxillary

CAVITIES OF THE SKULL

• **Orbit** – FLEZMS 7 fused bones; form walls that encase eyeball, lacrimal gland, and their associated blood vessels, muscles, and nerves
 - Frontal bone
 - Lacrimal
 - Ethmoid
 - Zygomatic
 - Maxilla
 - Sphenoid bone
 - and ___________ bones

THE FETAL SKULL

Fontanel (soft spot) = area of incomplete _______________________
 - Anterior
 - Posterior
 - Sphenoid
 - Mastoid

HYOID BONE

• **Hyoid**
 – doesn’t *articulate* with any other bones
 – C-shaped bone
 – Provides numerous muscle attachment points involved in ______________________
Forensic Skull Anatomy

• Forensic investigators often must identify human remains with little to go on except bones; can provide many clues (particularly skull); one of most basic traits that can be identified from a skull is gender
• Four obvious differences:

→ Module 7.3: Vertebral Column & Thoracic Cage

OVERVIEW OF THE VERTEBRAL COLUMN

Vertebral column (spine) – composed of about ______ bones (vertebrae)
 • 7 cervical – located in ______
 • 12 thoracic – articulate with ______
 • 5 lumbar – in __________

• 5 fused sacral (collectively called sacrum)
• 3-5 fused coccygeal (collectively called coccyx)

• Spinal curvatures – C-shaped vertebral column of newborn → S-shaped secondary curvatures as infant grows
 – Primary curvatures (________ and sacral) present during fetal dev.
 – Secondary curvatures (________ and lumbar) dev. after fetal period

• Abnormal spinal curvatures:
 o Scoliosis – abnormal ________ curvatures
 o Lordosis (swayback) – exaggerated cervical and ________ curvatures
 o Kyphosis (hunchback)
 – exaggeration of ________ curvature

STRUCTURE OF THE VERTEBRAE

• Cervical (7) – smallest vertebrae
 – ________ foramina allows passage of vertebral arteries and veins
 – C1 (_______)
 • Lacks vertebral body
 • Articulates with occipital condyles and C2
 – C2 (______)
 • Dens (odontoid process) protrudes from body
 • Allows for rotational movement of head at neck; (shaking your head “no”)
• Thoracic vertebrae (12)
 - long spinous processes
 - **Superior** and **inferior costal facets** (articulate with **head of rib**)
 - **Transverse costal facets** on transverse processes (articulate with __________ on rib)
 Posterior view: Shaped like __________

• Lumbar vertebrae (5)
 – *largest* and *heaviest* of all vertebrae (______________)
 Posterior view- shaped like __________

• **Sacro** – 5 *fused* sacral vertebrae
 – **Sacral promontory** – bony *projection* at anterior margin of base (superior aspect)
 – **Sacral foramina** – 4 *pairs of holes* allows for _______ ________________

• **Coccyx** = 4 fused (3-5) vertebrae

STUDY BOOST: **REMEMBERING SKULL BONES AND VERTEBRAE**

• **PEST OF 6** (*six cranial bones*): Parietal, Ethmoid, Sphenoid, Temporal, Occipital, Frontal
• **Virgil Is Now Making My Pet Zebra Laugh** (*facial bones*): Vomer, Inferior nasal conchae, Nasal, Mandible, Maxillae, Palatine, Zygomatic, Lacrimal
• **For Easier Sinus Memorization** (*paranasal sinuses*):
 Frontal, Ethmoidal, Sphenoidal, Maxillary
• **Breakfast at 7, lunch at 12, dinner at 5** (*number of vertebrae*): 7 cervical, 12 thoracic, and 5 lumbar

Sphenoid = Bat bone **Ethmoid = iceberg in skull**
• Intervertebral disc
 = fibrocartilage pad found between bodies vertebrae
• Nucleus pulposus – jelly-like substance; shock absorber
• Anulus fibrosus – outer ring of ____________
 Herniated disc or “slipped disc”

Herniated Disc
• A tear in anulus fibrosus can allow nucleus pulposus to protrude, a condition known as a
 herniated disc (commonly called a slipped disc)
• Bulging nucleus pulposus compresses nerve
• Treatments

THE THORACIC CAGE

• Thoracic cage
 =
 – sternum
 • Manubrium – superiormost
 • Body - middle
 • Xiphoid process – inferior

Rib cage= 12 pairs of ribs and their costal cartilages
• Ribs 1–7 (______ribs or vertebrosternal ribs) attach to sternum via their costal cartilages
• Ribs 8–12 (______ribs) not directly attached to sternum
 – Vertebrochondral ribs 8–10 – attached to cartilage of 7th rib
 – _________ or vertebral ribs 11 & 12
 - are not attached to sternum

Structure of a typical rib.

The Sternum and CPR
• Cardiopulmonary resuscitation (CPR)

• Correct placement of hands on sternum is critical
Module 7.4: Bones of the Pectoral Girdle and Upper Limb

PECTORAL GIRDLE

- Pectoral girdle – clavicle and scapula
 - Clavicle
 - Sternal end
 - Acromial end

- Scapula
 - Acromion
 - Coracoid process
 - Subscapular fossa (anterior aspect)
 - Glenoid cavity (articulates with head of humerus)
 - Spine (__________ ridge)
 - Supraspinous fossa
 - Infraspinous fossa

THE HUMERUS

- Humerus
 - head articulates with glenoid cavity at shoulder joint
 - __________ neck is a groove surrounding head
 - __________ neck proximal diaphysis
 - greater & lesser tubercle lateral and anterior to head
 - olecranon fossa
 - coronoid fossa
 - capitulum
 - trochlea

BONES OF THE FOREARM

Bones of forearm (antebrachium)

- Radius (________ bone)
 - head, neck, radial tuberosity, styloid process
- Ulna (__________)
 - trochlear notch, olecranon, coronoid process, radial notch, styloid process
BONES OF THE WRIST: CARPALS

Wrist (carpus) – _________________ (carpals)
(lateral to medial)
 – Scaphoid, Lunate, Triquetrum, Pisiform (proximal)
 – Trapezium, Trapezoid, Capitate, Hamate (distal)

BONES OF THE HAND AND FINGERS: METACARPALS AND PHALANGES

Metacarpals – 5 each hand
Phalanges – 14 each hand
 - proximal, middle, and distal __________
 - Thumb proximal & distal phalanx

Wrist Fractures
• Wrist is the most frequently injured region of upper limb;
• Fractures
 Colles fracture

→ Module 7.5: Bones of the Pelvic Girdle and Lower Limb

BONES OF THE PELVIC GIRDLE AND LOWER LIMB

Pelvic girdle =
 • coxal bones (also known as os coxae)
 • Articulates with sacrum (axial skeleton)

Pelvis – bowl-shaped sacrum and two coxal bones; creates boundary for pelvic cavity
 Pelvic inlet – oval opening formed by sacrum and pelvic girdle
 Pelvic brim – bony ridge surrounding inlet that defines boundaries between greater and lesser pelvis

• Each __________ is composed of 3 fused bones:
 ilium, ischium, and pubis

Female and male pelvis differ between genders:
 female pelvis (adapted for childbirth) is wider and shallower than male
• **Shape of greater pelvis:**
 - pelvis is *wider* in females with *flared* iliac crests
 - increases distance between ASIS

• **Coccyx and sacrum:**
 - female sacrum is *wider* and *shorter* than male sacrum
 - while female coccyx is *more moveable* and *more posterior* than male

• **Pelvic inlet and outlet:** female inlet is usually *wider* and *oval-shaped* whereas male inlet is *narrow* and *heart shaped*; female outlet is generally *wider* than male

• **Acetabula:** generally *farther apart* in females and pointed more *anteriorly* than in males

• **Pubic arch:**
 – angle measured in females = __________
 – male arch measures between __________

FEMUR AND PATELLA

• **Femur** – *largest* and *strongest* bone
 – head articulates with ____________ at hip joint
 – Neck
 – Greater and Lesser trochanter
 – Linea aspera
 – Medial and a lateral condyles
 – Patellar surface

• **Patella**

BONES OF THE LEG: TIBIA AND FIBULA

• **Tibia** (_______ bone) larger bone, wt. bearing
 – Tibial tuberosity
 – Medial malleolus

• **Fibula** (_______ bone)
 – Lateral malleolus
BONES OF THE ANKLE AND FOOT:
TARSALS, METATARSALS, AND PHALANGES

- **Tarsals** – 7 short bones
 - *Proximal* tarsals: _______ **calcaneus**, and **navicular**
 - *Distal* tarsals medial to lateral: 3 cuneiforms (medial, intermediate, lateral) and **cuboid**
- **Metatarsals** – 5 in each foot
- **Phalanges** – 14 in each foot

STUDY BOOST: REMEMBERING BONES OF THE ARM AND LEG

Carpals: Stop Letting The People Touch The Cadaver’s Hand
 = Scaphoid, Lunate, Triquetrum, Pisiform, Trapezium, Trapezoid, Capitate, Hamate
 (Mentions “hand”, so remember that it describes carpals, not tarsals; trapeziUM is by thUMb)

Tarsals: College Needs Me In Lab Classes
 = Talus, Calcaneus, Navicular; Medial, Intermediate, & Lateral cuneiform, Cuboid
Articulations (joints) = where bones meet
- allow __________
- provide __________
- allow long bones to _________ (epiphyseal plate)

Module 8.1: Classification of Joints

FUNCTIONAL CLASSIFICATION
Based on _________:
• Synarthrosis – no movement between articulating bones
• Amphiarthrosis – small amount of movement between articulating bones
• Diarthrosis – freely moveable, allowing a wide variety of specific movements

STRUCTURAL CLASSIFICATION
Based on their ___________ features:
• Fibrous joints – dense regular collagenous CT; (synarthroses or amphiarthroses)
• Cartilaginous joints – cartilage; (synarthroses or amphiarthroses)
• Synovial joints – fluid-filled joint capsule with hyaline cartilage at articular ends; (diarthrosis)

Module 8.2: Structural Classification: Fibrous Joints

FIBROUS JOINTS
3 types:
• Suture
• Gomphosis
• Syndesmosis

• Suture - fibrous CT
______________ of cranium; immoveable joint

• Gomphosis – tooth in bony socket (periodontal ligament);
______________ joint

• Syndesmosis – joint between tibia & fibula, ulna & radius (interosseous membrane);

Module 8.3: Structural Classification: Cartilaginous Joints

Cartilaginous Joints

2 types:
- Synchondrosis
- Symphysis

Synchondrosis - *hyaline cartilage*;
 Synarthroses (epiphyseal plate, 1st sternocostal and costochondral joints);

Epiphyseal Plate Fractures
- Epiphyseal plate in a child’s long bone is one of the
 weakest parts of a developing skeleton

- Treatment

Fibrous Joints

- Symphysis – *fibrocartilaginous pad; amphiarthrosis*
 - ______________
 - Pubic symphysis

Module 8.4: Structural Classification: Synovial Joints

Synovial Joints:
- Joint cavity (*synovial cavity*) – space found between articulating bones

- Articular capsule – double-layered structure
 - Outer fibrous layer
 - Inner synovial membrane \rightarrow synovial fluid (lubricates, metabolic fcn.,
 shock absorber)
 - __________ cartilage – *hyaline cartilage*; covers all exposed articulating bones
 within a joint

- Diarthrosis
Synovial joints allow more mobility – less stable than other joint types. Structures that provide additional stabilization:

- **Ligament** – dense regular CT connects ____________

- **Tendon** - dense regular CT connects ____________

Bursae and tendon sheaths provide stabilization forces

Bursitis

• Most common sites of bursitis

 • Clinical features

Arthritis – defined as inflammation of one or more joints which results in pain and limitations of joint movement:

 - **Osteoarthritis (OA)** – most common; associated with ____________, injuries, and advanced age; characterized by pain, joint stiffness, and lost mobility
 - **Rheumatoid arthritis (RA)** – associated with joint destruction; ____________
 - **Gouty arthritis** – joint damage due to inflammatory reaction to ____________ deposits

→ **Module 8.5: Functions of Synovial Joints**

Movements at Synovial Joints

• **Gliding movements** – sliding motion between articulating surfaces

• **Flexion, Extension, Hyperextension**

• **Abduction, Adduction**

• **Circumduction, Rotation**

• **Inversion, Eversion**

• **Supination, Pronation**

• **Dorsiflexion, Plantar flexion**
Module 8.6: Types of Synovial Joints

Types of Synovial Joints

- **Plane joint** (gliding joint) – most simple and least mobile articulation between flat surfaces of two bones

- **Hinge joint** – convex articular surface of one bone interacts with concave depression of second bone

- **Pivot joint** – one bone pivots or rotates around other

- **Condylar (ellipsoid) joint** – convex surface of one bone fits into concave articular surface of a second bone

- **Saddle joint** – each bone’s articulating surface has both a concave and convex region

- **Ball-and-socket joint** – spherical surface of one bone fits into cup-shaped depression in second bone

Specific Hinge Joints

Elbow – very stable hinge joint:

- **Humeroulnar joint** – articulation between *trochlea* of humerus and *trochlear notch* of ulna

- **Humeroradial joint** – articulation between *capitulum* of humerus and head of radius

Knee:

- ___________ joint – articulation between *femoral and tibial condyles*

 - **Patellofemoral joint** – articulation between posterior surface of *patella* and anterior patellar surface of *femur*

 - **Medial and lateral meniscus** – fibrocartilage pads between femoral and tibial condyles

 - **Tibial collateral ligament** (medial collateral) – connects femur, medial meniscus, and tibia to one another to provide *medial joint stabilization*

A & P FLIX: MOVEMENT AT THE ELBOW

A & P FLIX: MOVEMENT AT THE KNEE JOINT
Knee Injuries and the Unhappy Triad

- **Shoulder** (__________) – ball-shaped head of *humerus* and *glenoid cavity*:
 - **Glenoid labrum** – *fibrocartilaginous ring*; increases depth of glenoid cavity to provide more *stability*
 - **Biceps brachii tendon** - helps keep head of humerus within glenoid cavity
 - **Rotator cuff**, providing most of joint’s structural stabilization: _____________, *infraspinatus, subscapularis*, and _____________

A & P FLIX: MOVEMENT AT THE GLENOHUMERAL JOINT

- **Hip** (__________) – *acetabulum* and ball-shaped *head of femur*:
 - **Acetabular labrum** – *fibrocartilaginous ring* that helps to stabilize head of femur within *acetabulum*

A & P FLIX: MOVEMENT AT THE HIP JOINT

Hip Joint Replacement Surgery

- **Hip replacement** – surgical procedure that replaces a painful damaged joint with an *artificial prosthetic device*

- Severe *arthritis, trauma, fractures*, and *bone tumors* can all progress to point where hip joint replacement is an option

- **Total replacement**

- **Partial replacement**