Bio217: Pathophysiology Class Notes
Professor Linda Falkow

Unit VII: Respiratory System Disorders

Chapter 25: Structure & Function of Pulmonary System
Chapter 26: Alterations of Pulmonary Function

Structure and Function of the Pulmonary System

Chapter 25

Structures of the Pulmonary System

- Conducting Airways
- Pulmonary circulation
- Lungs
 - Lobes (__________________________)
 - Segments
 - Lobules

Structures of the Pulmonary System

- Conducting airways (__________________________)
- Upper airways
 - Nasopharynx
 - Oropharynx
 - Laryngopharynx
- Lower airways
 - Trachea
 - Bronchi
 - Terminal bronchioles
Structures of the Pulmonary System
- Gas-exchange airways
 - Respiratory bronchioles
 - Alveolar ducts
 - Alveoli
- Epithelial cells
 - Type I alveolar cells
 - Alveolar structure
 - Type II alveolar cells
 - Surfactant production

Pulmonary and Bronchial Circulation
- Pulmonary circulation has lower pressure than systemic circulation (~1/5 pressure)
- Pulmonary artery divides and enters lung at hilus
- Each bronchus and bronchiol has an accompanying artery or arteriole
- Alveolarcapillary (__________) membrane
 - Formed by the shared alveolar and capillary walls
 - Gas exchange occurs across this membrane

Alveolarcapillary (respiratory) membrane
O₂ and CO₂ – trading places

Chest Wall and Pleura
- Chest wall
 - ________________
- Thoracic cavity
- Pleura
 - Serous membrane
 - Parietal and visceral layers
 - Pleural space (cavity)
- Pleural fluid

Alveolar gas exchange – how much O₂ and CO₂ trade places in alveoli?

Ventilation to perfusion ratio (V/Q) - depends on amt. of air in alveoli (ventilation) to amt. of air in blood (perfusion)

Normal lung: Alveoli rec. air ~4 L/min
 - Capillaries supply blood ~5 L/min
 = 4:5 = 0.8
Bio217 Sp14

Unit 7

Thoracic Cavity

Function of the Pulmonary System

- Ventilation
 - Mechanical movement of gas or air into and out of lungs
 - Minute volume (L/min) = total volume of air entering lungs/min
 = Ventilatory rate (breaths/min) x TV
 - Alveolar ventilation = vol. of gas/unit time that reaches gas exchange portion of lung
 = (TV - dead space) x ventilatory rate
 - PFTs (Pulmonary function tests) measure lung volumes and rates to diagnose disorders

Ventilation

- Neurochemical control
 - Respiratory center
 - Dorsal respiratory group - rhythm of respiration
 - Ventral respiratory group - becomes active during increased respiration
 - Pneumotaxic center - limits amt. of inspired air
 - Apneustic center - prevents overinflation of lungs
 - Central chemoreceptors respond to pH, pCO₂, pO₂
 - Peripheral chemoreceptors (carotid & aortic bodies)
 - Respond to decr. pO₂

Neurochemical Respiratory Control

Mechanics of Breathing

- Alveolar surface tension and ventilation
- Function of surfactant
- Elastic properties of the lung and chest wall
 - Elastic recoil - lungs return to resting state
 - Compliance - distensibility of lung and chest wall (opposite of elasticity)
- Airway resistance - depends on R and flow
- Work of breathing - effort of muscles for ventilation
Mechanics of Breathing

Gas Transport
- Diffusion of O_2
 - Ventilation of the lungs
 - Diffusion of oxygen from alveoli into capillary blood
 - Perfusion of systemic capillaries with oxygenated blood
 - Diffusion of oxygen from systemic capillaries into cells

- Diffusion of CO_2 occurs in reverse order

Measurement of Gas Pressure

Gas Transport
- Oxygen transport
 - Diffusion across the alveolocapillary membrane
 - Determinants of arterial oxygenation
 - Hemoglobin binding, oxygen saturation
 - Oxyhemoglobin association and dissociation
 - Oxyhemoglobin dissociation curve
 - Bohr effect

- Carbon dioxide transport
 - Dissolved in plasma
 - Bicarbonate
 - Carbamino compounds

- Haldane effect
 - Effect of O_2 on CO_2 transport out of blood
1. The cilia of the bronchial wall:
 - A. Ingest bacteria
 - B. Trigger sneeze reflex
 - C. Trap and remove bacteria
 - D. Propel mucus and trapped bacteria toward oropharynx

2. As the terminal bronchioles are approached:
 - A. Epithelium becomes thicker
 - B. Mucus-producing glands increase
 - C. Epithelium becomes thinner
 - D. Cartilage support increases
 - E. SMC layer thickens

3. The left primary bronchus:
 - A. Is shorter and wider than the right
 - B. Is symmetrical to the right
 - C. Is more vertical than the right bronchus
 - D. Is more angled than the right

4. Alveoli are excellent for gas exchange due to:
 - A. Large surface area
 - B. Thin epithelial layer
 - C. Extensive vascularization
 - D. All of the above

5. When the diaphragm and ext. intercostals contract:
 - A. Intrathoracic V increases
 - B. Intrathoracic P increases
 - C. Intrathoracic V decreases
 - D. None of the above

6. A shift to the right in the O2-Hb dissociation curve:
 - A. Prevents O2 release at cell level
 - B. Cause O2 to bind tighter to Hb
 - C. Improves O2 release at cell level
 - D. Both a and b

7. The DRG of neurons:
 - A. Sets the automatic rhythm of respiration
 - B. Modifies the rhythm of respiration
 - C. Is active when increase ventilation is required
 - D. None of the above

Alterations of Pulmonary Function

Chapter 26

Signs and Symptoms of Pulmonary Disease

- Dyspnea
 - Subjective sensation of uncomfortable breathing
 - Orthopnea
 - Dyspnea when a person is lying down
 - Paroxysmal nocturnal dyspnea (PND)

- Abnormal breathing patterns
 - Kussmaul respirations (hyperpnea) – due to increased exercise or metabolic acidosis
 - Cheyne-Stokes respirations – alternating deep and shallow breathing (due to slowed blood flow to brainstem)

- Hypoventilation

- Hyperventilation

- Cough
 - Acute cough
 - Chronic cough

- Hemoptysis – (not to be confused with hematemesis= vomiting blood)
Pulmonary Edema

- Pulmonary edema = ________________
 - Most common cause is heart disease (LV fails → increased pulm. cap. hydrostatic pressure; inhalation of toxic gas; lymphatic system blockage)

- Atelectasis = _____________
 - Tends to occur after surgery, post-op patients breathe shallowly and develop thick secretions (inc. incentive spirometer to increase collateral ventilation between adjacent alveoli)

Pleural Abnormalities

- Pneumothorax
 - _______ in pleural cavity due to rupture of visceral or parietal pleura

Pleural Abnormalities

- Pleural effusion – fluid in pleural space
 - Transudative (watery) or exudative (high WBCs) effusion
 - Hemothorax - _______ in pleural cavity
 - Empyema – pus in pleural cavity

Conditions Caused by Pulmonary Disease or Injury

- Abscess formation and cavitation
- Abscess
- Consolidation
- Cavitation
- Pulmonary fibrosis
 - Excessive amount of _____________ in the lung

Pulmonary Disorders

Progression of ARDS:
- Assault to pulmonary system
- Respiratory distress
- Decreased lung compliance (distensibility of lung and chest wall)
- Severe respiratory failure
Pulmonary Disorders

- Postoperative respiratory failure
- Atelectasis
- Pneumonia
- Pulmonary edema
- Pulmonary emboli
- Prevention
 - Frequent turning, deep breathing, early ambulation, air humidification, and incentive spirometry

Obstructive Pulmonary Disease

- Airway obstruction that is worse with expiration
- Common signs and symptoms
 - Dyspnea and wheezing
- Common obstructive disorders
 - Asthma
 - Emphysema
 - Chronic bronchitis

Chronic Obstructive Pulmonary Disease

- Airway obstruction that is worse with expiration

Obstructive Pulmonary Disease

- Common signs and symptoms
 - Dyspnea and wheezing
- Common obstructive disorders
 - Asthma
 - Emphysema
 - Chronic bronchitis

Respiratory Tract Infections

- Pneumonia – acute infection of lung (____________) that impairs gas exchange usually
- Classified:
 - Origin - bacterial, viral, fungal
 - Location
 - Bronchopneumonia (distal airways & alveoli);
 - Lobar pneumonia (in part or entire lobe)
- Type
 - Primary (inhale or aspirate pathogen)
 - Secondary (may occur after lung damage following chemical insult or from bacteria in blood)

Pneumococcal Pneumonia
Common causal microbes

- Streptococcus pneumoniae (aka Pneumococcus)
 - high mortality rate in elderly
- Mycoplasma pneumoniae
 - common in young people esp. living in close quarters
- Influenza – most common viral pneumonia
 - Legionella species → Legionnaire’s disease
 - Pseudomonas aeruginosa, S. aureus – most common nosocomial infectious agents

Pathophysiology

- Aspiration of secretions (oro- and laryngopharynx)
- Inhale microbes from infected persons (cough, sneeze…)
- Lines of defense
 - microbes expelled from naso- and oropharynx
 - alveolar macrophages
 - Activation of inflammatory and immune responses
 → alveolar edema

Characteristics

- Bacterial (Streptococcal)
 - sudden onset chill, temp 102 to 104 °F
 - follows upper resp. tract infection
- Viral (Influenza)
 - cough, cyanosis, high fever, substernal pain, headache, myalgia

Pathophysiology

- Avian Influenza (H5N1)
 - highly pathogenic virus caused infection in poultry in Asia and infected humans in 1997
 - At first infected humans who had close contact with birds
 - Several cases mutated virus spread from human to human
 - Fever, cough, sore throat, muscle aches, eye infections
- Swine flu (H1N1)
 - Pandemic flu April 2009 – June 2010
 - Similar symptoms to seasonal flu
 - CDC reported “61 million cases (12,500 deaths)”

Respiratory Tract Infections

- Tuberculosis – infectious disease that affects mostly lungs, can involve other systems
 - Due to exposure to Mycobacterium tuberculosis
 - Airborne transmission – cough or sneeze spreads infected droplets
 - (granulomatous lesion) – macrophages ingest bacilli → tubercles →
 - Caseous necrosis and scar tissue
 - Positive tuberculin skin test (PPD)
 - Once bacilli isolated in tubercles → immunity and dormancy

Pulmonary Embolism

- Venous thrombosis
 - Thrombus formation
 - Development of pulmonary embolism
 - Hypoxia, shock, pulmonary infarction
 - Release of inflammatory and thrombolytic substances
 - Paroxysmal dyspnea
 - Thrombus formation
 - Hypertension
 - Respiratory distress
 - Pulmonary infarction
 - Hemorrhage
 - Shock
 - Death
Pulmonary Embolism

- **Pulmonary embolism** – blockage of pulmonary vessel by _______ (blood clot, tissue, lipid, foreign object or air)
- Risk factors – conditions → blood clotting
 - (venous stasis, hypercoagulability, injury to endothelial lining, genetic)
- Pathophysiology
 - Massive occlusion → blockage of pulmonary artery
 - Embolism w/ infarction – large enough to cause tissue death
 - Embolism w/out infarction – no permanent damage if no infarction clots are dissolved.

Pulmonary Embolism

- Most clots dev. in lower extremities, DVT.
- Clinical:
 - Sudden onset chest pain, dyspnea, tachypnea, tachycardia
 - → severe pulmonary HT and shock
- Treatment:
 - Prevention is best
 - Leg elevation, ambulation, calf compression
 - Anticoagulants (heparin) and antithrombotics
 - Surgery (thrombectomy)

Pulmonary Vascular Disease

- **Pulmonary hypertension**
 - Mean pulmonary artery pressure 5 to 10 mm Hg above normal or above 20 mm Hg
 - Primary pulmonary HT (PPH)
 - Idiopathic, rare
 - Malfunction of endothelium → incr. VC (thromboxane) and decr. VD (prostacyclin)
 - Vessel wall changes (thick & fibrous) → VC → incr. R → incr. P in pulmonary arteries
 - Secondary pulmonary HT
 - Due to respiratory disease (hypoxemia, arterial VC)
 - Pulmonary venous HT – due to CHF

Pulmonary Hypertension

Pulmonary Hypertension

Lung Cancer

- **Bronchogenic carcinomas**
 - Arise from ____________ of resp. tract
 - Epidemic in US (most common cause of cancer death)
 - Most common cause is cigarette smoking
 - Heavy smokers have a 20 times greater chance of developing lung cancer than nonsmokers
 - Smoking is related to cancers of the larynx, oral cavity, esophagus, and urinary bladder
 - Environmental or occupational risk factors are also associated with lung cancer

Lung Cancer

- Non–small cell lung cancer
 - Squamous cell carcinoma (slow)
 - Adenocarcinoma (moderate)
 - Large cell carcinoma (undifferentiated, rapid)
 - Small cell carcinoma (very rapid)
Lung Cancer

- **Pathophysiology**
 - Tobacco smoke >30 carcinogens → 80-90% of lung cancers
 - Genetic predisposition
 - Both lead to genetic abnormalities in bronchial cells
 - Loss of tumor suppressing genes
 - Tumor progression due to growth factors
 - Mucosa suffers from chronic exposure to smoke → metaplasia → carcinoma → spreads in lung → metastasis (brain, bone, liver)

- **Evaluation and treatment**
 - TNM classification
 - **Tumor**
 - **Nodal involvement**
 - **Metastasis**
 - Surgery, chemotherapy, and radiation

Matching:

1. Kussmaul resp. → a. Alveolar collapse
2. Hemptysis → b. Cough blood
3. Cyanosis → c. Decr. arterial oxygenation
4. Cheyne-Stokes → d. Apnea, incr. vent., apnea
5. Atelectasis → e. Incr. vent. rate, effortless TV, no exp. pause

6. Pulmonary edema may be caused by abnormal:
 - A. Capillary hydrostatic press.
 - B. Capillary oncotic pressure
 - C. Cap. Permeability
 - D. All of the above

Matching:

7. Pneumonia → a. Originate from thrombi in legs
8. TB → b. Caused by air pollutants
9. Chronic bronchitis → c. Caused by aerobic bacillus
10. Pulmonary emboli → d. May be caused by mycoplasms

11. The metastasis of lung squamous cell carcinoma is:
 - A. Late
 - B. Very early and widespread
 - C. Early
 - D. Never seen