Bio217: Pathophysiology Class Notes Professor Linda Falkow

Unit VI: Blood and Cardiovascular System Disorders

Chapter 19: Structure & Function of the Hematologic System Chapter 20: Alterations of Hematologic Function Chapter 22: Structure & Function of CV & Lymphatic Systems Chapter 23: Alterations of Cardiovascular Function

Components of the Hematologic System

Main functions

- Delivery of substances needed for cell metabolism
- Removal of wastes
 Defense against microorganisms and injury
- Maintain acid-base balance

Components of the Hematologic System

- Composition of blood
 - Cellular components (~45%)
 - _____ (red blood cells)
 - Carry O₂ and remove CO₂
 - 120-day life cycle
 - _____ (white blood cells)
 - $-\operatorname{Defend}$ the body against infection and remove debris
 - Granulocytes (neutrophils, eosinophils, basophils)
 - Agranulocytes (monocytes and lymphocytes)
 - _____ (platelets)
 - Disk-shaped cytoplasmic fragments
 - Essential for blood clotting

- Tests of bone marrow function
 - Bone marrow aspiration
 - Bone marrow biopsy
 - Measurement of bone marrow iron stores
 - Differential cell count
- Blood tests
 - Large variety of tests

Concept Check

C. Glucose

C. Globulins

- 1. Which is not a component of plasma?
 - A. Colloids
 - B. Electrolytes D. Platelets
- 2. Which is the most abundant protein in blood?
 - A. Fibrinogen
 - B. Albumins D. Hormones
- 3. The purpose of EPO:
 - A. Decrease maturation of RBCs
 - B. Detect hypoxia
 - C. Control RBC production
 - D. Control platelet size

4. About how many times more RBCs than WBCs are there in a mm³ of blood?

- A. 15 C. 100
- B. 90 D. 1000
- 5. Which of the following are agranulocytes?
 - A. Mast cell
 - B. Lymphocyte
 - C. Monocyte
 - D. Reticulocyte
 - E. B and C are correct

Alterations of Hematologic Function Chapter 20

- Anemia = reduced number of _____ or Hb
 - Impaired erythrocyte production
 - Acute or chronic blood loss
 - Increased erythrocyte destruction
 - Classifications
 - Identified by terms that end in "-cytic"
 - Macrocytic, microcytic, normocytic

- Identified by terms that end in "-chromic"
- Normochromic and hypochromic

Anemia

- Physiologic manifestation
 - Reduced oxygen-carrying capacity
- Variable symptoms depending on severity and body's ability to compensate
- Classic anemia symptoms

 Fatigue, weakness, dyspnea, and pallor

Macrocytic-Normochromic Anemias

Pernicious anemia (PA)

- Caused by a lack of intrinsic factor (IF)
 (______ cells in stomach)
- Results in vitamin ${\rm B}_{\rm 12}$ deficiency
- Loss of appetite, abdominal pain, beefy red tongue (atrophic glossitis), icterus, and splenic enlargement
- PA associated with incr. alcohol intake, hot tea, smoking
- Treatment: Vit. B₁₂ throughout life

Microcytic-Hypochromic Anemias

Iron deficiency anemia (IDA)

- Most common type of anemia worldwide
- Due to:
 - Inadequate dietary intake of ______
 - Pregnancy
 - Blood loss (2-4ml/day- ulcer, hiatal hernia, colitis, menorrhagia)
 - Iron malabsorption (chronic diarrhea, celiac disease)
- Progression of iron deficiency causes:
 - Brittle, thin, coarsely ridged, and spoon-shaped nails (koilonychia)
 - Red, sore, and painful tongue (glossitis)

Microcytic-Hypochromic Anemias

- Pathophysiology
 - Iron use in body for Hb and storage for future Hb
 - Iron is recycled and it is important to maintain a balance.
 - Blood loss ightarrow disrupts the balance
 - Normal Hb = ~12-18g/dl
 - When Hb levels drop to7-8g/dl patients seek medical attention
- Treatment
 - Determine source of blood loss
 - Iron replacement therapy

Alterations of Leukocyte Function

- Quantitative disorders
 - _____ or _____ in cell numbers
 - Bone marrow disorders or premature destruction of cells
 - Response to infectious microorganism invasion
- Qualitative disorders
 - Disruption of cellular function

Quantitative Alterations of Leukocytes

- Leukocytosis
 - Leukocytosis is a normal protective physiologic response to physiologic stressors
- Leukopenia
 - Leukopenia is not normal and not beneficial
 - A low white count predisposes a patient to infections

Granulocytosis (Neutrophilia)

- Neutrophilia is evident in the first stages of an infection or inflammation
- If the need for neutrophils increases beyond the supply, immature neutrophils (banded neutrophils) are released into the blood

Granulocytosis (Neutrophilia)

- This premature release is detected in the manual WBC differential and is termed a shift to the left
- When the population returns to normal, it is termed a shift to the right

Monocytes

Monocytosis

- Poor correlation with disease
- Usually occurs with neutropenia in later stages of infections
- Monocytes are needed to phagocytize organisms and debris
- Monocytopenia
 - Very little known about this condition

Lymphocytes

Lymphocytosis

Acute viral infections
Epstein-Barr virus

• Lymphocytopenia

Immune deficiencies, drug destruction, viral destruction

Infectious Mononucleosis

- Acute, self-limiting infection of Blymphocytes transmitted by saliva through personal contact
- Commonly caused by the Epstein-Barr virus (EBV)—85%
 - B cells have an EBV receptor site
 - Others viral agents resembling IM
 Cytomegalovirus (CMV), hepatitis, influenza, HIV

Infectious Mononucleosis

- Symptoms: fever, sore throat, swollen cervical lymph nodes, increased lymphocyte count, and atypical (activated) lymphocytes
- Serious complications are infrequent (<5%)
 - Splenic rupture is the most common cause of death

Infectious Mononucleosis

- >50% lymphocytes and at least 10% atypical lymphocytes
- Diagnostic test
 - Monospot qualitative test for heterophilic antibodies
- Treatment: ______

Leukemias

- Malignant disorder of the blood and bloodforming organs
- Excessive accumulation of leukemic cells
- Acute leukemia
 - Presence of undifferentiated or immature cells, usually blast cells
- Chronic leukemia
 - Predominant cell is mature but does not function normally
- Lymphocytic leukemia
- Myeloid leukemia

Leukemias

- Acute lymphocytic leukemia (ALL)
 80% of all childhood leukemias (~81% remission)
- □ Acute mvelogenous leukemia (AML)
 - One of most common leukemias in adults
 - 1 yr. survival after diagnosis w/ aggressive treatment
- Chronic myelogenous leukemia (CML)
 - Myeloproliferation in bone marrow, middle aged mostly
- Chronic lymphocytic leukemia (CLL)
 - Most benign and slow growing; affects elderly

Pathophysiology

- Immature hematopoietic cells → leukemic cells
- Leukemic cells multiply ightarrow crowding other cell
- ullet ightarrow abnormal RBCs, WBCs, platelets and decreased numbers

Leukemias

- Signs and symptoms of leukemia
 - -Anemia, bleeding, purpura, petechiae,
 - ecchymosis, thrombosis, hemorrhage,
 - DIC, infection, weight loss, bone pain,
 - elevated uric acid, and liver, spleen and
 - lymph node enlargement

Disorders of Platelets

- -Platelet count <150,000/mm³
 - <50,000/mm³—hemorrhage from minor trauma
 - <15,000/mm³—spontaneous bleeding
 - <10,000/mm³—severe bleeding

Disorders of Platelets

- Thrombocytopenia
 - Causes
 - Hypersplenism, autoimmune disease, hypothermia, and viral or bacterial infections that cause disseminated intravascular coagulation (DIC), HIT
- ITP (Idiopathic thrombocytopenia)
 - I- immune system makes antibodies against platelets
 - T- trapped platelets appear in spleen and liver
 - P- phagocytosis causes thrombocytopenia

Symptoms:

- Nosebleed, oral bleeding
- Purpura
- Petechiae

Disorders of Platelets

Immune thrombocytopenic purpura (ITP)

- IgG antibody that targets platelet glycoproteins
- Antibody-coated platelets are sequestered and removed from the circulation
- Acute form of ITP that often develops after a viral infection is one of most common childhood bleeding disorders
- Manifestations: Petechiae and purpura, progressing to major hemorrhage

Disseminated Intravascular Coagulation (DIC)

- Complex, acquired disorder in which clotting and hemorrhage simultaneously occur
- DIC is result of increased protease activity in blood caused by unregulated release of thrombin w/ subsequent fibrin formation and accelerated fibrinolysis
- Endothelial damage is primary initiator of DIC

Chapter 22

Systemic Circulation

- Arteries
- Arterioles
- Capillaries
- Venules
- Veins

Structure of Blood Vessels

- Lumen
- Tunica intima
- Tunica media
- Tunica externa (adventitia)

Concept Check 1. Oxygenated blood flows through: A. SVC B. Pulmonary veins C. Pulmonary arteries

- D. Coronary veins
- 2. In the normal cardiac cycle which of the
 - following occurs? (more than one is correct)
 - A. RA and RV contract together
 - B. The 2 atria contract together, while the 2 ventricles relaxC. The 2 ventricle contract together , while the 2 atria relax.
 - D. Both the ventricles and the atria contract simultaneously to increase cardiac output.

3. The normal heartbeat is initiated by: A. Coronary sinus C. SA node B. AV bundle D. AV node 4. Which does not significantly affect HR: A. SNS nerves C. AV valves B. PSN nerves D. ACh 5. Which is the correct sequence of the pulmonary circuit? a. Pulm. Veins b. Pulm. Arteries c. Lungs d. RV e. LA

Alterations of CV Function

Chapter 23

Diseases of the Veins

Deep venous thrombosis (DVT)

Obstruction of venous flow leading to increased venous press.
 Factors

- Poor circulation \rightarrow Venous stasis (immobile, age, CHF)
- Venous endothelial damage (drugs, trauma)
- Hypercoagulable states (inherited states, _____)
- Venous thrombi are more common than arterial due to low pressure in veins

Diseases of the Arteries and Veins

• Hypertension (HT)

- consistent elevation of BP
- Systolic > 140 mmHg; Diastolic > 90 mmHg

– Primary HT

- aka essential or idiopathic HT
- Genetic and environmental factors
- Affects 92% to 95% of individuals with HT

Secondary HT

Caused by a systemic disease that raises PR or CO

Understanding HT

- 1. Kidneys \rightarrow renin into blood
- 2. Renin converts angiotensin to angiotensin I (in liver)
- Angiotensin I → Angiotensin II (in lungs)
 Angiotensin II potent VC
- 4. Angiotensin II → constriction in arterioles and secretion of aldosterone
- 5. Aldosterone \rightarrow Na+ and H₂0 retention
- 6. Retained Na+ and $H_2O \rightarrow$ incr. blood vol.
- 7. VC \rightarrow increased PR
- 8. Incr. blood vol. and PR \rightarrow HT

Diseases of the Arteries and Veins Atherosclerosis

- Most common form of arteriosclerosis
- Thickening and hardening is caused by accumulation of lipid-laden macrophages in the arterial wall

– _____ development

Diseases of the Arteries and Veins

- Atherosclerosis
 - Progression
 - Damaged endothelium
 - Cellular proliferation & macrophage migration
 - Macrophages \rightarrow foam cells that accumulate fat
 - Fatty streak (lesion)
 - Fibrous plaque due to SMC proliferation

Peripheral Arterial Disease

- Atherosclerotic disease of arteries that perfuse limbs
- Intermittent claudication

Coronary Artery Disease

- Any vascular disorder that narrows or occludes
 the coronary arteries
- Atherosclerosis is the most common cause
- ➢Risk factors
 - Dyslipidemia (abnormal blood levels of lipids) Hypertension Cigarette smoking Diabetes mellitus Obesity/sedentary lifestyle

Coronary Artery Disease

- Nontraditional risk factors
 - Markers of inflammation and thrombosis
 - C-reactive protein (C-rp), fibrinogen, protein C, and plasminogen activator inhibitor
 - Hyperhomocysteinemia (lack of enz. to breakdown homocysteine)
 - Infection (Clamydia pneumonae, H. pylori)

Coronary Artery Disease

• Myocardial infarction (MI)

- Sudden and extended obstruction of the myocardial blood supply
- Subendocardial MI if thombus breaks up before necrosis, only will involve myocardium under endocardium
- Transmural MI if thrombus permanently lodged in vessel , infarct will extent throughout heart wall

Myocardial Infarction

- Pathophysiology
 - Cellular injury cardiac cells can w/stand
 _____ min. of ischemia prior to cell death
 Ischemic cells loose contractile ability (pH and
 - electrolyte changes)
 - Cellular death 20 min. of ischemia → irreversible damage and cells death
 - release of CPK from damaged cardiac cells
- Symptoms:
 - crushing chest pain (unrelenting indigestion)
 - decr. BP
 - SNS stimulation (rel. of _____) → diaphoresis and peripheral VC

Disorders of Heart wall

• Acute Pericarditis

- Causes:
 - Viruses or idiopathic (90%)
 - MI, cardiac surgery, autoimmune

Symptoms

- Severe retrosternal pain
- Phrenic nerve irritation

Treatment: anti-inflammatory drugs, colchicine

Arrhythmias

- Disturbance of the heart rhythm
- Range from occasional "missed" or rapid beats to severe disturbances that affect pumping ability of heart
- Caused by an abnormal firing of _______ (pacemaker) or conduction system

Dysrhythmias

- Examples:
 - Tachycardia (HR > 100-120 bpm)
 - Flutter (HR =250- 300)
 - Fibrillation (HR > 300)
 - Bradycardia (HR < 60 bpm)
 - Premature ventricular contractions (PVCs)
 - Premature atrial contractions (PACs)

Congestive Heart Failure

- _____ cannot pump effectively
- Left sided heart failure usually occurs first
- Due to infarction, mitral stenosis (blood vol. low), V or P overload, arrhymthmias
- LV function decreases \rightarrow blood backs up in pulmonary veins \rightarrow pulmonary edema
- Dysfunction of myocardium \rightarrow activate RAA and SNS \rightarrow remodel of ventricle
- Treatment: ACE inhibitors, beta blockers, Angiotensin II blockers slow progression

Concept Check 1. Factors in the dev. of atherosclerotic plaque include all of the following except: A. accumulation of LDL B. SMC proliferation C. calcification D. decreased elasticity E. complement activation 2. Complications of uncontrolled HT include all of the following except: A. CVAs D. Cardiac hypertrophy B. Anemia E. All of the above C. Renal injury

A. Myocarditis	C. Atherosclerosis
B. Hypoglycemia	D. Vasospasm
Matching:	
4. aortic stenosis	A. Clot detached from vessesl wall
5. cardiomyopathy	B. Lesion of atherosclerosis
6. infarction	C. Assoc. with RHD
7. mitral stenosis	D. Death of myocardial tissue
8. fibrous plaque	E. Disease of myocardium
9. thromboembolism	F. Dec. blood flow from LV due to narrowed aortic semilunar valve