Bio217: Pathophysiology Class Notes
Professor Linda Falkow

Unit V: Endocrine System Disorders

Chap. 17: Mechanisms of Hormonal Regulation
Chap. 18: Alterations of Hormonal Regulation

The Endocrine System

- **Components**
 - Glands located around the body that secrete chemical messengers (________)

- **Functions**
 - Works with _______ to regulate and integrate metabolism and maintain homeostasis

Hypothalamus ("heart of the endocrine system")

- Center for integrating endocrine and ANS
- Regulates endocrine glands via _______ and __________ pathways

 - **Posterior Pituitary** (neural pathways)
 - ADH (antidiuretic hormone)
 - Oxytocin

 - **Anterior Pituitary** (hormonal control)
 - ACTH (adrenocorticotropic hormone)
 - TSH (thyroid stim. hormone)
 - LH (luteinizing hormone)
 - FSH (follicle stim. hormone)
 - also GH (growth horm.) and PRL (prolactin)

Negative Feedback - regulates the endocrine system by ____________ overproduction of hormones

Lipid-Soluble Hormones
Hormone Binding at Target Cell

Anterior Pituitary Hormones

Endocrine disorders
- May be caused by
 - Hypersecretion or hyposecretion of hormones
 - Hyporesponsiveness of hormone receptors
 - Gland inflammation
 - Tumors of glands

Adrenal glands
- Embedded in fat superior to each kidney
- **Adrenal cortex:**
 - 1. **Aldosterone**
 - regulates Na+ reabsorption & excretion of K+
 - 2. **Cortisol**
 - stimulates gluconeogenesis
 - protein breakdown and fatty acid mobilization
 - suppression of immune system
 - increased stress response
 - maintains BP and CV fcn.
 - 3. **Adrenal androgens & estrogens**

Aldosterone
- Epinephrine & Norepinephrine (catecholemines)
 - produce VC
 - ______ response (“fight or flight”)
Catecholamines

Thyroid and Parathyroid Glands

- **Thyroid gland**
 - Located in anterior neck; two lobes lie on either side of the trachea
 - Secrete Iodine-containing hormones
 - _____ – nec. for growth & dev.; increase metabolism
 - _____ – regulates blood Ca++ levels
- **Parathyroid glands**
 - 4 glands located on posterior aspect of thyroid
 - Secrete _____
 - Regulates blood Ca++ levels

Thyroid and Parathyroid Glands

- The pancreas is both an _____ and _____ gland
- Contains pancreatic islets (of Langerhans)
 - Secretion of glucagon and insulin
 - Cells
 - Alpha—glucagon (nec. when fasting → _____ BG)
 - Beta—insulin (released after a meal → _____ BG, stim. protein syn. and fatty acid uptake & storage)

Endocrine Pancreas

Concept Check

1. Organs that respond to a particular hormone are called:
 - A. target organs
 - B. integrated organs
 - C. responder organs
 - D. hormone attach organs

2. The hypothalamus controls the anterior pituitary by:
 - A. Nerve impulses
 - B. PG
 - C. Regulating hormones
 - D. None of the above
3. In a negative feedback mechanism controlling thyroid hormone secretion, which is the nonregulatory hormone?
• A. TRH
• B. TSH
• C. thyroxine
• D. All of the above are regulatory for thyroid hormone secretion

Matching:
____ 4. ACTH a. Mammary glands
____ 5. TSH b. Adrenal cortex
____ 6. TRF c. Thyroid gland
____ 7. prolactin d. Ant. pit.

Matching:
____ 8. Epi a. Influence inflam. response
____ 9. Glucocorticoids b. Causes fight or flight response
____ 10. Mineralcorticoids c. Controls Na+, H+, K+
____ 11. Gonadocorticoids d. Act as minor sex hormones

Alterations of Hormonal Regulation

Chapter 18

Elevated or Depressed Hormone Levels
• Failure of feedback systems
• Dysfunction of an endocrine gland
• Secretory cells are unable to produce, obtain, or convert hormone precursors
• The endocrine gland synthesizes or releases excessive amounts of hormone

Endocrine Disorders
• Pituitary disorder of water metabolism (diabetes insipidus)
• 3 Thyroid gland disorders (goiter, hyperthyroidism, hypothyroidism)
• Pancreatic disorder (diabetes mellitus: type 1 and type 2)
• 2 Adrenal disorders (Addisons’s and Cushing’s syndrome)
Elevated or Depressed Hormone Levels

- Increased hormone degradation or inactivation
- Ectopic hormone release

Diseases of the Posterior Pituitary

- **Diabetes insipidus**
 - Deficiency of ___ (aka vasopressin)
 - Polyuria (4-16 L/day) and polydipsia
 - Partial or total inability to concentrate urine
 - Causes: drugs or injury to posterior pituitary; lesions in hypothalamus, infundibulum or post. pit.
 - Normally ADH is syn. in hypothalamus and stored in post. pit. ADH is released when plasma osmolality increases → increased permeability to dct and cd in kidney → increased reabsorption of water.
 - When ADH is missing: results in increased excretion of water → large amt. of dilute urine

Diabetes Insipidus

- **Pathophysiology:**
 - Patients not able to concentrate urine
 - Deficiency of ADH → __________ vol. of dilute urine
 - __________ if fluids are not replaced
 - Treatment: replacement of ADH

Alterations of Thyroid Function

- **Goiter** = enlargement of thyroid gland
 - not due to inflammation or neoplasm
 - Classified as:
 - nontoxic (increased demand for TH during adolescence, pregnancy or menopause) and
 - toxic (due to long term nontoxic, occurs in elderly)
 - Please pass the iodine
 - Endemic goiter due to insufficient dietary iodine → insufficient production of TH
 - Too much of a good thing
 - Sporadic goiter due to ingestion of goitrogenic foods* (inhibit thyroxine) or drugs

Goiter

- **Pathophysiology**
 - Decreased iodine plus impaired synthesis of TH → responsiveness of thyroid to TSH
 - Increased mass and cell activity may overcome mild thyroid impairment (Patient has goiter but normal fcn.)
 - If severe impairment → goiter and hypothyroidism

Alterations of Thyroid Function

- **Hyperthyroidism**

*goitrogenic foods - foods that can cause goiter by inhibiting the production of thyroxine or by suppressing the thyroid gland.
Hyperthyroidism or thyrotoxicosis (Graves Disease)

Graves’ Disease

- How grave is Graves’ disease?
- Graves’ disease is the most common type
- Autoimmune, 30-60 years old, family history of thyroid abnormalities
- Thyroid-stimulating antibodies bind to TSH receptors
- Thyroid storm (thyrotoxic crisis)
 Overproduction of T3 and T4 → increased SNS activity
 (tachycardia, vascular collapse, hypotension, coma, death)

Graves’ disease

- Signs & Symptoms
 - Enlarged thyroid
 - Exophthalmos
 - Nervousness, weight loss w/ increased appetite
- Treatment
 - Antithyroid drugs (propylthiouracil, methimazole)
 - 131 I (radioactive iodine therapy)
 - Surgery

Alterations of Thyroid Function

- Hypothyroidism
 - Thyroid deficiency (decreased T3 and T4) → metabolic processes slow (may be problem with thyroid, pituitary, or hypothalamus)
 - Primary hypothyroidism – due to disorder of thyroid
 - Secondary hypothyroidism – due to failure to stimulate thyroid
 - Causes: thyroidectomy, radiation, not enough TSH (from pituitary) or TRH (from hypothalamus)
 - Symptoms: fatigue, wt. gain, facial puffiness, dry skin, bleeding tendencies

Pathophysiology

- Loss of thyroid tissue → decreased TH, increased TSH and goiter (primary)
- Decreased TSH from pituitary most commonly due to tumors (secondary)
- Myxedema - composition of dermis is changed (puffiness)
- Myxedema coma - depressed respiratory system, decreased cardiac output, bradycardia & hypotension
- Treatment: TH replacement gradually (levothyroxine)

Hypothyroidism
Diabetes Mellitus

- Body does not produce or use _______ properly
- Results in hyperglycemia

Type 1 (IDDM = insulin-dependent)
Type 2 (NIDDM = non-insulin-dependent)

Type 1 diabetes

- Pathophysiology (Type 1)
 - Islet cell (beta cell) destruction → no insulin production
 - Autoimmune (genetic & environmental)
 - Nonautoimmune (idiopathic)

- Symptoms
 - Lack of insulin → __________ occurs w/ 89-90% destruction of beta cells; excess glucagon by alpha cells
 - Glucosuria, polyuria, polydipsia
 - Ketoacidosis due to fat and protein metabolism → DKA coma

- Treatment: Insulin, meal planning and exercise, Hb A1C

Type 2 diabetes mellitus

- Pathophysiology
 - Idiopathic, genetic and environmental factors
 - Insulin resistance in target tissues
 - Overproduction of glucose via gluconeogenesis
 - Obesity

- Symptoms
 - Recurring skin infections
 - Visual changes (blurred vision, retinopathy)
 - Paresthesias
 - Fatigue (poor eating)
- Treatment
 - Personalized meal plan & exercise

Acute Complications of Diabetes Mellitus

- Hypoglycemia (insulin shock- decr. BG levels)
- Diabetic ketoacidosis _______ – dec. insulin levels → elevated BG levels → fat mobilized
- Somogyi effect – hypoglycemia followed by hyperglycemia (rebound)
- Dawn phenomenon – early morning elevated BG

Diabetic Ketoacidosis

Chronic Complications of Diabetes Mellitus

- Hyperglycemia
- Microvascular disease
 - Retinopathy
 - Diabetic nephropathy
- Macrovascular disease
 - Coronary artery disease
 - Stroke
 - Peripheral arterial disease
- Diabetic neuropathies
- Infection
Alterations of Adrenal Function

- Disorders of the adrenal cortex
 - Cushing disease
 • Excessive anterior pituitary secretion of ________
 - Cushing syndrome
 • Cluster of abnormalities due to excessive levels of cortisol (glucocorticoid)
 • Wt. gain, muscle weakness, fatigue, buffalo hump, thin extremities, bruise easily
 - Treatment:
 • Radiation, drugs, surgery depending on cause

Addison's disease

- (adrenal insufficiency or hypofunction)
- Mineralcorticoid, glucocorticoid, and androgen secretion
- Cause — usually from autoimmune process
 • Idiopathic, TB, removal of adrenals, neoplasms, infections
- Adrenal crisis
 • Inadequate or nonresponsive hormone therapy
 • Extreme stress
 • hypoglycemia, hypotension → coma → death

Cushing Disease

- A. Before onset of Cushing syndrome
- B. 4 months later

Concept Check

- 1. Which clinical symptoms are shared by DM and diabetes insipidus?
 - A. Elevated blood and urine glucose levels
 - B. Inability to produce ADH
 - C. Inability to produce insulin
 - D. Polyuria

- 2. Graves disease is:
 - A. Hyperthyroidism
 - B. Associated with autoimmunity
 - C. Characterized by ophthalmopathy
 - D. All of the above

- 3. A 24-year old female with a history of “juvenile onset” diabetes is found in a stupor. She has cold, clammy skin, what is most likely the cause of her condition?
 - A. Hyperglycemia
 - B. Insulin shock
 - C. Renal failure
 - D. retinopathy

- 4. Common signs and symptoms of DM include all of the following except:
 - A. Hyperglycemia
 - B. Blurred vision
 - C. Increased muscle anabolism
 - D. polyuria

Matching:

- ____ 5. Cushing disease — A. Excess cortisol
- ____ 6. Goiter — B. Enlarged thyroid
- ____ 7. Addison disease — C. Adrenal hypofunction