Overview of the Nervous System

- Central nervous system (CNS)
 - Brain and spinal cord
- Peripheral nervous system (PNS)
 - Cranial nerves
 - Spinal nerves
 - Pathways
 - Afferent (ascending)
 - Efferent (descending)

Cells of the Nervous System

- Neuron (conducts nerve impulses)
 - Variable size and structure
- Three components
 - Cell body (soma)
 - Nuclei = cell bodies in the CNS
 - Ganglia = cell bodies in the PNS are ganglia
 - Dendrites
 - Receive impulses
 - Axons
 - Carry impulses away from the cell body

Neuron

- Axons
 - Myelin
 - Insulating layer of lipid material
 - Formed by the Schwann cell
 - Endoneurium
 - Delicate layer of CT around each axon
 - Neurilemma
 - Thin membrane between the myelin sheath and the endoneurium

Overview of the Nervous System

- Peripheral nervous system (PNS)
 - Somatic nervous system
 - Motor (efferent) and sensory (afferent) pathways regulating voluntary motor control of skeletal muscle
 - Autonomic nervous system (ANS)
 - Motor and sensory pathways regulating the body’s internal environment through involuntary control of organ systems
 - Sympathetic (“Fight or flight”)
 - Parasympathetic (“Rest and repose”)

Structure and Function of the Nervous System

Chapter 12

Overview of the Nervous System

- Central nervous system (CNS)
 - Brain and spinal cord
- Peripheral nervous system (PNS)
 - Cranial nerves
 - Spinal nerves
 - Pathways
 - Afferent (ascending)
 - Efferent (descending)

Cells of the Nervous System

- Neuron (conducts nerve impulses)
 - Variable size and structure
- Three components
 - Cell body (soma)
 - Nuclei = cell bodies in the CNS
 - Ganglia = cell bodies in the PNS are ganglia
 - Dendrites
 - Receive impulses
 - Axons
 - Carry impulses away from the cell body

Neuron

- Axons
 - Myelin
 - Insulating layer of lipid material
 - Formed by the Schwann cell
 - Endoneurium
 - Delicate layer of CT around each axon
 - Neurilemma
 - Thin membrane between the myelin sheath and the endoneurium
Neuron

- Axons
 - Nodes of Ranvier
 - Regular interruptions of the myelin sheath
 - Saltatory conduction
 - The flow of ions between segments of myelin rather than along the entire length of the axon

Structural Classification of Neurons

- Based on the number of processes extending from the cell body
 - Unipolar
 - Bipolar
 - Multipolar

Functional Classification of Neurons

- Sensory (afferent)
 - Transmit impulses from sensory receptors to the CNS
- Associational (interneurons)
 - Transmit impulses from neuron to neuron
- Motor (efferent)
 - Transmit impulses from the CNS to an effector

Neuroglia

- “Nerve glue”
- Support the neurons of the CNS
 - Astrocytes
 - Oligodendroglia (oligodendrocytes)
 - Microglia
 - Ependemal
Nerve Impulse

- Neurons generate action potentials by selectively changing the **electrical** portion of their plasma membranes and influencing other nearby neurons by release of neurotransmitters (**chemicals**).

Synapses

- Region between adjacent neurons (pre- and postsynaptic neurons) is called a synapse.
- Impulses are transmitted across the synapse by chemical and electrical conduction.
- Neurotransmitters
 - More than 30 substances
 - (ACh, serotonin, NE, dopamine)
 - Excitatory or Inhibitory.

Central Nervous System

BRAIN:
- Forebrain
 - Cerebral hemispheres
- Midbrain
 - Corpora quadrigemina, substantia nigra, and cerebral peduncles
- Hindbrain
 - Cerebellum, pons, and medulla

Diencephalon
- Thalamus
- Hypothalamus

Midbrain
- Corpora quadrigemina
 - Superior and inferior colliculi
- Tegmentum
 - Red nucleus and substantia nigra (⇒ dopamine ⇒ NE)
 - Cerebral peduncles
Central Nervous System

- Hindbrain
 - Cerebellum
 - Pons
 - Medulla oblongata

Spinal Cord

- Located in **vertebral canal**, protected by the **vertebral column**
 - Connects the brain and the body
 - Conducts somatic and autonomic reflexes
 - Modulates sensory and motor function

Spinal Cord

- Located in **vertebral canal**, protected by the **vertebral column**
 - Connects the brain and the body
 - Conducts somatic and autonomic reflexes
 - Modulates sensory and motor function

Spinal Cord

- Located in **vertebral canal**, protected by the **vertebral column**
 - Connects the brain and the body
 - Conducts somatic and autonomic reflexes
 - Modulates sensory and motor function

Spinal Cord

- Located in **vertebral canal**, protected by the **vertebral column**
 - Connects the brain and the body
 - Conducts somatic and autonomic reflexes
 - Modulates sensory and motor function

Reflex Arc

- Receptor
- Afferent (sensory) neuron
- Efferent neuron
- Effector

Neuromuscular Junction

- Motor neuron fiber
- Myelin sheath
- Schwann cell
- Synaptic vesicles
- Sarcolemma
- Acetylcholine receptor sites
- Synaptic cleft
- Motor end-plate
Protective Structures

• **Cranium**
 – Eight bones
 • Frontal, Occipital, Temporal (2), Parietal (2), Sphenoid, Ethmoid
 • Galea aponeurotica

• **Meninges**
 – Protective membranes surrounding brain & SC s
 • Dura mater
 • Arachnoid
 • Pia mater

Protective Structures

• **Cerebrospinal fluid (CSF)**
 – Clear, colorless fluid similar to blood plasma and interstitial fluid
 – 125 to 150 mL
 – Produced by choroid plexuses in the lateral, third, and fourth ventricles
 – Reabsorbed through arachnoid villi

Protective Structures

• **Vertebral column**
 – 33 vertebrae
 • 7 cervical, 12 thoracic, 5 lumbar, 5 fused sacral, 4 fused coccygeal
 – Intervertebral disks
 • Nucleus pulposus

Vertebral Column

Blood Supply to the Brain

• 800 to 1000 mL per minute
• CO₂ is the primary regulator for CNS blood flow
• Internal carotid and vertebral arteries
• Arterial circle (circle of Willis)
Peripheral Nervous System

- **31 pairs of spinal nerves**
 - Named for vertebral level from which they exit
 - Mixed nerves
 - Arise from gray matter of the spinal cord

- **12 pairs of cranial nerves**
 - Sensory, motor, and mixed

Autonomic Nervous System

- Located in both the CNS and PNS
- Maintains a homeostasis in visceral (internal) organs
- Neurons
 - Preganglionic (myelinated)
 - Postganglionic (unmyelinated)
Autonomic Nervous System

- Two divisions
 - Sympathetic
 - "Fight or flight" response
 - Thoracolumbar
 - Sympathetic (paravertebral) ganglia
 - Parasympathetic
 - "Rest or repose" response
 - Craniosacral
 - Preganglionic neurons travel to ganglia close to organs they innervate

Sympathetic Nervous System

Parasympathetic Nervous System

Neurotransmitters and Neuroreceptors of the ANS

- SNS preganglionic fibers
 - ACh (cholinergic)
- SNS postganglionic fibers
 - NE (adrenergic)
- PSN preganglionic and postganglionic fibers
 - ACh

Aging and the Nervous System

- Decrease in the number of neurons
 - Decreased brain weight and size
- Senile plaques
- Neurofibrillary tangles
- Slowing of neurologic responses
Concept Check:

1. One function of the somatic NS that is not performed by the ANS is conduction of impulses:
 - A. To involuntary muscles and glands
 - B. To the CNS
 - C. To skeletal muscles
 - D. Between the brain and SC

2. Neurons are specialized for the conduction of impulses, while neuroglia:
 - A. Support nerve tissue
 - B. Serve as motor end plates
 - C. Synthesize ACh and AChE
 - D. All of the above

3. Which of the following best describes the SC?
 - A. Descends inferior to the lumbar vertebrae
 - B. Conducts motor impulses from the brain
 - C. Descends to L4
 - D. Conducts sensory impulses to the brain

4. Which is not a protective covering of the CNS?
 - A. Cauda equina
 - B. Dura mater
 - C. Arachnoid
 - D. Cranial bone

5. The SNS:
 - A. Mobilizes E in times of need
 - B. Is innervated by cell bodies from T1 → L2
 - C. Is innervated by cell bodies located in the cranial nerve nuclei
 - D. Both A and B are correct

6. The PSN:
 - A. Conserves and stores E
 - B. Has relatively short postganglionic neurons
 - C. Both A and B are correct
 - D. Has paravertebral ganglia

Pain, Temperature, Sleep, and Sensory Function

Chapter 13

Pain

• “Pain is whatever the experiencing person says it is, existing whenever he says it does” —McCaffrey

Neuroanatomy of Pain

• Nociception
 - Perception of pain
• Nociceptors
 - Free nerve endings in skin, muscle, joints, arteries, and the viscera that respond to chemical, mechanical, and thermal stimuli
Pathways of Nociception

- Spinothalamic tracts

Neuromodulation of Pain

- Neuromodulators
 - Located in pathways of NS
 - Triggered by tissue injury and/or inflammation
 - Excitatory neuromodulation
 - Substance P, glutamate, somatostatin
 - Inhibitory neuromodulation
 - GABA, glycine, serotonin, NE, endorphins

Neuromodulation of Pain

- Endorphins (endogenous morphines)
 - Neuropeptides – inhibit pain transmission in CNS
 - Bind opioid receptors
- Beta-endorphins (rel. from hypothalamus & pit. gland)
- Enkephalin (weaker than other endorphins)
- Dynorphins (can stimulate pain)
- Endomorphins (cause VD due to NO released from endothelial cells)

Endorphin Response

Acute Pain

- Manifestations
 - Fear and anxiety
 - Tachycardia, hypertension, fever, diaphoresis, dilated pupils, outward pain behaviors, elevated BG, decreased gastric acid secretion and intestinal motility, and a general decrease in blood flow
- Referred pain
 - Pain present in an area removed or distant from point of origin
 - Area of referred pain is supplied by same spinal segment as the actual site
 - Myocardial infarction pain
Chronic Pain

- May be sudden or develop insidiously
- Usually defined as lasting at least 3 to 6 months
- Produces significant behavior and psychologic changes
- Types:
 - Low back pain
 - Myofascial pain syndromes
 - Chronic postoperative pain
 - Cancer pain

Neuropathic Pain

- Result of trauma or disease of nerves
- Peripheral
 - Painful diabetic neuropathy
- Central
 - Phantom limb

Temperature Regulation

- Peripheral & central thermoreceptors
- Hypothalamic control (range ~37°C ± 0.7°C)
- **Heat production**
 - Metabolism
 - Skeletal muscle contraction
 - Chemical thermogenesis
- **Heat conservation**
 - Vasoconstriction
 - Voluntary mechanisms

Heat Loss

- Radiation, Conduction, Convection
- Vasodilation
- Decreased muscle tone
- Evaporation
- Increased respirations
- Voluntary measures
- Adaptation to warmer climates

Temperature Regulation

- Aging
 - Slow blood circulation, vasoconstrictive response, and metabolic rate
 - Decreased sweating and perception of heat and cold

Fever

- Resetting of the hypothalamic thermostat
- Activate heat production and conservation measures to a new “set point”
- Pyrogens (exogenous or endogenous) toxins from pathogens → PG (which reset thermostat)
Bio217

Unit IV

Fever

- Benefits of Fever
 - Kills many microorganisms
 - Decreases serum levels of Fe, Zn, and Cu
 - Promotes lysosomal breakdown and autodestruction of cells
 - Increases lymphocytic transformation and phagocyte motility
 - Augments antiviral interferon production

Hyperthermia

- Not mediated by pyrogens (no resetting of thermostat)
- 41°C (105.8°F): nerve damage produces convulsions
- 43°C (109.4°F): death results
- Forms
 - Heat cramps (abdom. pain, incr. sweat, loss Na+)
 - Heat exhaustion (collapse, profuse sweat, high core temp.)
 - Heatstroke (death, brain cannot tolerate temperatures >40.5°C (104.9°F))

Hypothermia

- Body temperature less than 35°C
- Produces:
 - VC, alterations in the microcirculation, coagulation, and ischemic tissue damage
 - Ice crystals, which form inside the cells, causing them to rupture and die

Hypothermia

- Accidental hypothermia
 - Commonly the result of sudden immersion in cold water or prolonged exposure to cold
- Therapeutic hypothermia
 - Used to slow metabolism and preserve ischemic tissue during surgery or limb reimplantation
 - May lead to ventricular fibrillation and cardiac arrest

Sleep

- Infants: 16-17 hours/day; about half in REM
- Elderly: decrease in sleep time, longer to fall asleep; increase in sleep apnea

REM = rapid eye movement sleep; 90 minute cycles after non-REM sleep
Sleep Disorders

• Insomnia
 – not able to fall asleep or stay asleep
 – idiopathic, abuse of drugs or alcohol, chronic pain, depression, or certain drugs, age, obesity

• Obstructive sleep apnea
 – Upper airway blockage
 – \(\rightarrow \) snoring
 – Apneic episodes > 10 sec.

Vision

• Blepharitis
 – Inflammation of the eyelids

• Hordeolum (stye)
 – Infection of the sebaceous glands of the eyelids

• Chalazion
 – Infection of the meibomian (oil-secreting) gland

• Keratitis
 – Infection of the cornea

External Eye Disorder

• Conjunctivitis
 – Inflammation of the conjunctiva

 • Acute bacterial conjunctivitis (pinkeye)
 • Highly contagious
 • Mucopurulent drainage from one or both eyes
 – Viral, Allergic, or Trachoma (chlamydial) conjunctivitis

Vision Changes and Aging

• Cornea
• Anterior chamber
• Lens
• Ciliary muscles
• Retina

Visual Dysfunctions

• Alterations in visual acuity
 – Cataracts – cloudy lens due to degeneration (age)
 – Glaucoma – increase in intraocular pressure
 – Age-related macular degeneration (AMD)
 – major cause of blindness in elderly; increased risk due to HT, smoking, diabetes mellitus
Aging and Hearing

- Cochlear hair cell degeneration
- Loss of auditory neurons in spiral ganglia of organ of Corti
- Degeneration of basilar conductive membrane of the cochlea
- Decreased vascularity of cochlea
- Loss of cortical auditory neurons

Ear Infections

- Otitis externa
 - Infection of the outer ear
 - Commonly caused by prolonged moisture exposure (swimmer’s ear)

- Otitis media
 - Acute otitis media
 - Otitis media with effusion

Auditory Dysfunction

- Mixed hearing loss – combination of conductive and sensorineural loss

- Functional hearing loss – no known cause

- Ménière disease – middle ear affected, hearing and balance are impaired

Concept Check

- 1. Endorphins:
 - A. Increase pain sensations
 - B. Decrease pain sensations
 - C. May increase or decrease pain
 - D. Have no effect on pain

- 2. IL-1:
 - A. Raises hypothalamic set point
 - B. Is an endogenous pyrogen
 - C. Is stimulated by exogenous pyrogens
 - D. All of the above
3. In heatstroke—
 – A. Blood viscosity increases
 – B. Core temp. increases as regulatory center fails
 – C. Stimulates VC
 – D. Ice crystals form in cells

Matching:

4. Meniere
disease A. due to airway obstruction during breathing
5. AMD B. Vestibular & hearing disruption
6. AOM C. Retinal detachment & loss of photoreceptors
7. Sleep apnea D. Effusion behind tympanic membrane

Alterations in Cognitive Networks

• Consciousness
 – State of awareness of oneself and env.
 – Arousal
 • State of awareness
 • Content of thought

Levels of Consciousness

• Consciousness – alert and aware of person, place, time
• Confusion – not able to think
• Lethargy – limited speech, may/maynot be oriented to PPT
• Obtundation – stimulation needed for arousal
• Stupor – unresponsive except for vigorous stimuli
• Coma – no vocalization or arousal

Alterations in Arousal

• Coma is produced by either:
 – Bilateral hemisphere damage or suppression
 – Brain stem lesions or metabolic derangement that damages or suppresses the RAS
 • RAS (reticular activating system = maintains wakefulness; consists of nuclei in brainstem and extends to cerebral cortex)
 – No verbal responses to stimuli
 – No reaction to deep pain
Alterations in Arousal
- Clinical manifestations of Coma
 - Level of consciousness changes
 - Pattern of breathing
 - Posthyperventilation apnea (PHVA)
 - Cheyne-Stokes respirations (CSR)
 - Vomiting
 - Pupillary changes
 - Oculomotor responses
 - Motor responses

Seizures
- Sudden, transient alteration of brain function caused by an abrupt explosive, disorderly discharge of cerebral neurons
- Motor, sensory, autonomic, or psychic signs
- Convulsion
 - Tonic-clonic (jerky, contract-relax) movements associated with some seizures

Dementia
- Progressive failure of cerebral functions that is not caused by an impaired level of consciousness
 - Classifications
 - Cortical
 - Subcortical

Alzheimer Disease (AD)
- Familial, early and late onset
- Nonhereditary (sporadic, late onset)
- Theories
 - Mutation for encoding amyloid precursor protein
 - Alteration in apolipoprotein E
 - Loss of neurotransmitter ACh

Alzheimer Disease (AD)
- Neurofibrillary tangles
- Senile plaques
- Clinical manifestations
 - Forgetfulness, emotional upset, disorientation, confusion, lack of concentration, decline in abstraction, problem solving, and judgment
- Diagnosis is made by ruling out other causes of dementia

Alterations in Movement
- Huntington disease
 - Also known as “chorea”
 - Autosomal dominant hereditary-degenerative disorder
 - Severe degeneration of the basal ganglia (caudate nucleus) and frontal cerebral atrophy
 - Depletion of gamma-aminobutyric acid (GABA)
Alterations in Movement

- Hypokinesia
 - Decreased movement
- Akinesia
- Bradykinesia
- Loss of associated movement

Parkinson Disease

- Severe degeneration of the basal ganglia (corpus striatum) involves dopamine secreting cells
 - Parkinsonian tremor
 - Parkinsonian rigidity
 - Parkinsonian bradykinesia
 - Postural disturbances

Concept Check

Matching:
1. Confusion
2. Lethargy
3. Obtundation
4. Stupor
5. Coma

- a. No speech or arousal
- b. Only responses to strong stimuli
- c. Stimulation necessary for arousal
- d. Speech limited, may or may not be oriented
- e. Not able to think straight

Alterations of Neurologic Function

- 6. AD a. Autosomal dominant, GABA decreased
- 7. HD b. Decreased dopamine, resting tremors
- 8. PD c. Neurofibrillary tangles, amyloid proteins
Bio217

Unit IV

Brain Trauma

• Major head trauma
 – Traumatic insult to the brain → physical, intellectual, emotional, social, and vocational changes
 – Transportation accidents
 – Falls
 – Sports-related event
 – Violence

Brain Trauma

• Closed (blunt, nonmissile) trauma
 – Head strikes hard surface or a rapidly moving object strikes the head
 – The dura intact, brain tissue not exposed to the env.
 – Causes focal (local) or diffuse (general) brain injuries

• Open (penetrating, missile) trauma
 – Injury breaks dura, exposes cranial contents to env.
 – Causes primarily focal injuries

Focal Brain Injury

• Observable brain lesion
• Force of impact produces contusions (bruise)
• Contusions can cause:
 – Extradural (epidural) hemorrhages or hematomas
 – Subdural hematomas
 – Intracerebral hematomas

Hematomas

– collection of blood in closed space

Subdural Hematomas
Mild Concussion
- Temporary axonal disturbance → attention and memory deficits but no loss of consciousness
- I: confusion, disorientation, and momentary amnesia
- II: momentary confusion and retrograde amnesia
- III: confusion with retrograde (events preceding trauma) and anterograde amnesia (unable to form recent memories)

Classic Cerebral Concussion
- Grade IV
 - Disconnection of cerebral systems from the brain stem and reticular activating system
 - Physiologic and neurologic dysfunction without substantial anatomic disruption
 - Loss of consciousness (<6 hours)
 - Anterograde and retrograde amnesia
 - Postconcussive syndrome (headaches, anxiety, insomnia, depression, unable to concentrate)

Spinal Cord Trauma
- Most commonly occurs due to vertebral injuries
 - Simple fracture, compressed fracture, and comminuted fracture and dislocation
- Traumatic injury of vertebral and neural tissues as a result of compressing, pulling, or shearing forces
Spinal Cord Trauma

• Spinal shock
 – Normal activity of the spinal cord ceases at and below the level of injury. Sites lack continuous nervous discharges from the brain.
 – Complete loss of reflex function below level of lesion

Degenerative Disorders of the Spine

• Degenerative disk disease (DDD)
 – Spondylolysis – structural defect of lamina or vertebral arch (lumbar)
 – Spondylolisthesis - vertebra slides forward
 – Spinal stenosis – narrowing of spinal canal, puts pressure on nerves (sciatica)
• Low back pain
• Herniated intervertebral disk – protusion of nucleus pulposus

Cerebrovascular Disorders

• Cerebrovascular accident (CVA) – stroke
 – Impairment of cerebral circulation
 – Leading cause of disability
 – 3rd leading cause of death in United States
 – Classified
 • Global hypoperfusion (as in shock)
 • Ischemia (thrombotic, embolic)
 • Hemorrhagic

• Cerebrovascular accidents (CVAs)
 – Thrombotic stroke
 • Arterial occlusions caused by thrombi formed in arteries supplying the brain
 • Due to obesity, smoking, OC, surgery
 • Transient ischemic attacks (TIAs)
 – Embolic stroke
 • Fragments that break from a thrombus formed outside the brain
 • Can also be from fat, tumor, bacteria, air
 • Middle cerebral artery is site of emboli

• Hemorrhagic stroke (intracranial hemorrhage)
 – Due to HT, aneurysms
 – Causes sudden rupture of cerebral artery
 – ➔ blood accumulating deep in brain
 ➔ further neural tissue compromise
TIA (transient ischemic attack)
- Recurring episode of neurologic deficit
- Lasts seconds to hours (clears in 12-24 hours)
- Microemboli → temporary interruption of blood flow
- Also small spasms of brain arterioles
- Double vision, blindness (unilateral), uncoordinated gait, fall due to weakness in legs, dizzy, slurred speech
- Temporary – clears in 12-24 hours
- Impending stroke sign – warning of stroke
- Aspirin or Anticoagulant is given to minimize blood clots

Intracranial Aneurysm

Infection and Inflammation of the CNS
- Meningitis
 - Bacterial meningitis
 - Aseptic (viral, nonpurulent, lymphocytic) meningitis
 - Fungal meningitis
 - Tubercular (TB) meningitis

Demyelinating Disorders
- Multiple sclerosis (MS)
 - MS is a progressive, inflammatory, demyelinating disorder of the CNS
 - Involves optic, oculomotor & spinal tracts
 - Ups and downs of MS – exacerbations & remissions
 - Occurs in women mostly (18-40yrs.)
 - Causes: viral, autoimmune, genetic, stress
 - Symptoms: optic neuritis & sensory impairment (paresthesia)
 - Prognosis varies

Understanding Demyelination
- Myelin (white matter) = lipoprotein that speeds nerve impulse conduction
- Injury to myelin by hypoxemia, chemicals, or autoimmune responses
- Leads to inflammation, breakdown of layers and formation of plaque (scar tissue)
- Damaged myelin sheath not able to conduct AP → neurologic dysfunction
Neuromuscular Junction Disorders

- **Myasthenia gravis** ("grave muscular weakness")
 - Chronic autoimmune disease
 - Antibodies produced against acetylcholine receptors
 - Weakness and fatigue of muscles head and neck → diplopia, difficulty chewing, talking, swallowing
 - Causes: unknown, autoimmune, disorders of thymus
 - Symptoms: progressive muscle weakness, respiratory distress (if diaphragm is involved)
 - Treatment: Anticholinesterase drugs, Corticosteroids

NMJ

- During normal NMJ transmission- motor neuron AP travels to axon terminal → release of ACh (neurotransmitter) → diffuses across cleft and attach to receptor sites on motor end plate → depolarization of muscle fiber.
- In MG – antibodies attach to ACh receptors and block the ACh from attaching → blocked neuromuscular transmission

Concept Check

1. If an individual struck the car windshield in a car accident, the coup/contrecoup injury would be in the:
 - A. Frontal/parietal region
 - B. Frontal/occipital region
 - C. Parietal/occipital region
 - D. Occipital/frontal region

2. Injury of the cervical SC may be life threatening due to:
 - A. Increased intracranial pressure
 - B. Spinal shock
 - C. Loss of bladder and rectal contrao
 - D. Impairment of the diaphragm

3. TIAs are:
 - A. Neurological deficits that slowly resolve
 - B. Neurological deficits that occur every hour
 - C. Focal neurological deficits that dev. suddenly, last for a few minutes, and clear in 24 hours
 - D. Events that never indicate an impending stroke

Matching

4. **MG**
 - a. Autoimmune disorder, antibodies attack ACh receptors at NMJ

5. **MS**
 - b. Protrusion of nucleus pulposus

6. Herniated disc
 - c. Demyelination of nerves