Mechanisms of Self-Defense

Inflammation

Chapter 5

Immunity

• First line of defense
 — Innate resistance (or natural immunity)
 — Includes natural barriers
• Second line of defense
 — Inflammation
• Third line of defense
 — Adaptive (acquired) immunity
 — Involves “memory”

First Line of Defense

• Physical and mechanical barriers
 — Skin
 — Mucous Membranes – linings of the GI, genitourinary, and respiratory tracts
 Mechanical removal:
 • Sloughing off of cells (dead skin cells)
 • Coughing and sneezing
 • Flushing from urinary system
 • Vomiting
 • Mucus and cilia (mucus escalator)

Second Line of Defense

• Inflammatory response
 — Caused by a variety of materials
 • Infection, mechanical damage, ischemia, nutrient deprivation, temperature extremes, radiation, etc.
 — Local manifestations
 • Heat, swelling, pain, loss of function
 — Vascular response
 • Vasodilation (VD), blood vessels become leaky, WBCs adhere to inner walls of vessels & migrate through the vessels

First Line of Defense

• Biochemical barriers
 — Enzymes synthesized and secreted in saliva, tears, ear wax, sweat, and mucus (lysozymes)
 — Antimicrobial peptides (acidic)
 — Normal bacterial flora on the skin and in gut
Inflammation

• Goals (Benefits of Inflammation)
 – Limit tissue damage and control the inflammatory process
 – Prevent and limit infection and further damage
 – Initiate adaptive immune response
 – Initiate healing

Cellular Mediators of Inflammation

• Cellular components
 - Granulocytes, platelets, monocytes, lymphocytes
 – Neutrophils & macrophages (mature monocytes) → phagocytic
 – Eosinophils → kill parasites
 – Platelets → clotting sequence & release mediators
 – Lymphocytes (NK cells) → attack virus and cancer infected cells

Mast Cells

• Important activator of inflammatory response
• Contain granules, located in loose CT
• Skin, digestive lining, and respiratory tract
• Release:
 – Histamine → VC of large blood vessels & VD of venules
 – Leukotrienes → SMC contraction, incr. vascular permeability
 – Prostaglandins
 • Similar to leukotrienes; they also induce pain (affect nerves)
 – Platelet-activating factor (PAF)
 • Similar effect to leukotrienes and platelet activation

Plasma Protein Systems

• Protein systems
 – Complement system
 • Circulating proteins that can destroy pathogens directly
 – Coagulation system
 • Forms a clot that stops bleeding
 – Kinin system
 • Bradykinin - causes VD, pain, SMC contraction, vascular permeability, and leukocyte chemotaxis
Phagocytosis

Phagocytes

- Neutrophils (PMNs)
 - Predominate in early inflammatory responses
 - Arrive 6-12 hr after injury
 - Ingest bacteria, dead cells, and cellular debris
 - Cells are short lived and become component of purulent exudate

Phagocytes

- Monocytes and macrophages
 - Monocytes - produced in bone marrow → blood → inflammatory site, where they develop into macrophages
 - Macrophages typically arrive at the inflammatory site 24 hours or later after neutrophils

Monocytes and Macrophages

- Increased cell size and lysosomal granules

Phagocytes

- Eosinophils
 - Mildly phagocytic
 - Duties
 - Main defense against parasites and regulation of vascular mediators from mast cells

Phagocytes

- Natural killer (NK) cells
 - Function against cells infected with viruses and cancer
- Platelets
 - Activation results in degranulation (release of serotonin) and to stop bleeding
Cytokines

- Interleukins (IL)
 - Produced by macrophages and lymphocytes in response to a pathogen or stimulation by other products of inflammation
- Interferon (INF)
 - Protects against viral infections
 - Produced and released by virally infected host cells in response to viral double-stranded RNA

Local Manifestations of Acute Inflammation

- Due to vascular changes & leakage of circulating components into the tissue
 - Heat
 - Redness
 - Swelling
 - Pain

Exudative Fluids

- Serous exudate
 - Watery exudate: indicates early inflammation
- Fibrinous exudate
 - Thick, clotted exudate: indicates more advanced inflammation
- Purulent exudate
 - Pus: indicates a bacterial infection
- Hemorrhagic exudate
 - Exudate contains blood: indicates bleeding

Systemic Changes due to Inflammation

- Fever
 - Caused by exogenous and endogenous pyrogens → act on hypothalamus
- Leukocytosis
 - Increased numbers of circulating leukocytes
- Increased plasma protein synthesis
 - Produced in liver

Chronic Inflammation

- Inflammation lasting 2 weeks or longer
- Often related to an unsuccessful acute inflammatory response
Resolution and Repair

- Debridement
 - Cleaning up the dissolved clots, microorganisms, erythrocytes, and dead tissue cells
- Healing
 - Filling in the wound
 - Sealing the wound (epithelialization)
 - Shrinking the wound (contraction)

Healing

- Primary intention
 - Wounds that heal under conditions of minimal tissue loss
- Secondary intention
 - Wounds that require a great deal more tissue replacement
 - Open wound

Healing

- Reconstructive phase
 - Fibroblast proliferation
 - Collagen synthesis
 - Epithelialization
 - Contraction
 - Cellular differentiation
- Maturation phase
 - Continuation of cellular differentiation
 - Scar tissue formation
 - Scar remodeling

Dysfunctional Wound Healing

- Dysfunction during inflammatory response
 - Hemorrhage
 - Fibrous adhesion
 - Infection
 - Excess scar formation
Dysfunctional Wound Healing
- Keloid (scar) formation

Dysfunctional Wound Healing
• Wound disruption
 — Dehiscence
 • Wound pulls apart at the suture line
 — Excessive strain and obesity are causes
 • Increases risk of wound sepsis

Concept Check
• 1. Inflammation:
 — A. Confines and destroys injurious agents
 — B. Stimulates and enhances immunity
 — C. Promotes healing
 — D. All of the above

• 2. Which of the following is not a local manifestation of inflammation?
 — A. Swelling
 — B. Pain
 — C. Heat and redness
 — D. Leukocytosis

• 3. The inflammatory response:
 — A. Prevents blood from entering injured tissue
 — B. Elevates body temp. to prevent spread of infection
 — C. Prevents formation of abscesses
 — D. Minimizes injury and promotes healing

• 4. Scar tissue is:
 — A. Nonfunctional collagen and fibrous tissue
 — B. Functional tissue that follows wound healing
 — C. Regenerated tissue formed in area of injury
 — D. Fibrinogen with entrapped phagocytes and neurons

Adaptive (specific) Immunity
- state of protection against infectious agents mainly
 - 3rd line of defense
• Antigens – found on infectious agents, environmental substances, cancers
• Specificity – of antigens for antibodies
• Memory – long lived response
• Antibodies – protect individual from infection
• Lymphocytes – mediate immune response
 — B and T cells
Antigen Presentation

- Antigen-presenting cells (APCs)
 - Macrophages and macrophage–like cells (B cells)

- Major histocompatibility complex (MHC)
 - Glycoproteins on the surface of all human cells (except RBCs)
 - Also referred to as human leukocyte antigens (HLAs)

Antibodies

- Also called immunoglobulins (Ig)
- Produced by plasma cells (mature B cells) in response to exposure to antigen

Classes of antibody

- IgG - most abundant class (80-85%), major antibody found in fetus & newborn
- IgA – found in blood and secretions
- IgM – largest, produced 1st in initial response to antigen
- IgE - lowest blood conc., allergic rxn.
- IgD – low conc. in blood, receptor on B cells.

Primary and Secondary Responses

- Primary response
 - Initial exposure
 - Latent period or lag phase
 - B cell differentiation is occurring
 - After 5 to 7 days, an IgM antibody for a specific antigen is detected
 - An IgG response equal or slightly less follows the IgM response

- Secondary response
 - More rapid
 - Larger amounts of antibody are produced
 - Rapidity is caused by the presence of memory cells that do not have to differentiate
 - IgM is produced in similar quantities to the primary response, but IgG is produced in considerably greater numbers
Concept Check

1. An antigen is
 A. A foreign protein capable of stimulating immune response in healthy person
 B. A foreign protein capable of stimulating immune response in susceptible person
 C. A protein that binds with an antibody
 D. A protein that is released by the immune system

2. Antibodies are produced by
 A. B cells
 B. T cells
 C. Plasma cells
 D. Memory cells

3. The antibody with the highest concentration in blood is:
 A. IgA
 B. IgD
 C. IgE
 D. IgG

4. If a child develops measles and acquires immunity to subsequent infections, the immunity is:
 A. Acquired
 B. Active
 C. Natural
 D. A and B are correct

5. Which cells are phagocytic?
 A. B cells
 B. T cells
 C. T killers
 D. Macrophages

6. When an antigen binds to its appropriate antibody:
 A. Agglutination may occur
 B. Phagocytosis may occur
 C. Antigen neutralization may occur
 D. All of the above

Hypersensitivities, Infection, and Immune Deficiencies

Chapter 7

Hypersensitivity

- Excessive immunologic reaction to an antigen that results in disease or damage to the host after reexposure

- Allergy
 - Deleterious effects of hypersensitivity to environmental (exogenous) antigens

- Autoimmunity
 - Disturbance in the immunologic tolerance of self-antigens

- Alloimmunity
 - Immune reaction to tissues of another individual
 - transient neonatal diseases (HDN)
 - transplant rejection and transfusion reaction
Hypersensitivity

• Characterized by the immune mechanism
 – Type I
 • IgE mediated
 – Type II
 • Tissue-specific reactions
 – Type III
 • Immune complex mediated
 – Type IV
 • Cell mediated

Type I Hypersensitivity

• IgE mediated
• Against environmental antigens (allergens)
• IgE binds to Fc receptors on surface of mast cells (cytotropic antibody)
• Histamine release
 – H_1 and H_2 receptors
 – Antihistamines

Type I Hypersensitivity

• Manifestations
 – Itching
 – Urticaria
 – Conjunctivitis
 – Rhinitis
 – Hypotension
 – Bronchospasm
 – Dysrhythmias
 – GI cramps and malabsorption

Type I Hypersensitivity

• Genetic predisposition
• Tests
 – Food challenges
 – Skin tests
 – Laboratory tests
• Desensitization
 – IgG-blocking antibodies
Type II Hypersensitivity

- Tissue specific
 - Specific cell or tissue (tissue-specific antigens) is the target of an immune response

- Five mechanisms
 - Cell is destroyed by antibodies & complement
 - Cell destruction through phagocytosis
 - Soluble antigen may enter the circulation and deposit on tissues
 - Antibody-dependent cell-mediated cytotoxicity
 - Causes target cell malfunction

Type III Hypersensitivity

- Immune complex mediated
- Antigen-antibody complexes are formed in the circulation and are later deposited in vessel walls or extravascular tissues
- Not organ specific

- Immune complex clearance
 - Large—macrophages
 - Small—renal clearance
 - Intermediate—deposit in tissues

Type IV Hypersensitivity

- Does not involve antibody
- Cytotoxic T-lymphocytes or lymphokine producing Th1 cells
 - Direct killing by Tc or recruitment of phagocytic cells by Th1 cells
- Examples
 - Acute graft rejection, skin test for TB, contact allergic reactions, and some autoimmune diseases
Allergy

- Environmental antigens that cause atypical immunologic responses in genetically predisposed individuals
 - Pollens, molds and fungi, foods, animals, etc.
- Allergen is contained within a particle too large to be phagocytosed or is protected by a nonallergenic coat
- Original insult is apparent

Autoimmunity

- Breakdown of tolerance
 - Body recognizes self-antigens as foreign
- Sequestered antigen
 - Self-antigens not normally seen by the immune system
- Infectious disease
 - Molecular mimicry
- Neoantigen
 - Haptens become immunogenic when they bind to host proteins

Autoimmunity

- Forbidden clone
 - During differentiation, lymphocytes produce receptor that react with self-antigens
- Ineffective peripheral tolerance
 - Defects in regulatory cells
- Original insult
- Genetic factors

Alloimmunity

- Immune system reacts with antigens on the tissue of other genetically dissimilar members of the same species
 - Transient neonatal alloimmunity
 - Fetus expresses parental antigens not found in the mother
 - Transplant rejection and transfusion reactions

Autoimmune Examples

- Systemic lupus erythematosus (SLE)
 - Chronic multisystem inflammatory disease
 - Autoantibodies against:
 - Nucleic acids, erythrocytes, coagulation proteins, phospholipids, lymphocytes, platelets, etc.

Autoimmune Examples

- Systemic lupus erythematosus (SLE)
 - Deposition of circulating immune complexes containing antibody against host DNA
 - More common in females
Systemic Lupus Erythematosus

- Clinical manifestations
 - Arthralgias or arthritis (90% of individuals)
 - Vasculitis and rash (70%-80%)
 - Renal disease (40%-50%)
 - Hematologic changes (50%)
 - Cardiovascular disease (30%-50%)

Countermeasures

- Vaccines
 - Induction of long-lasting protective immune responses that will not result in disease in a healthy recipient
 - Attenuated organism
 - Killed organisms
 - Recombinant viral protein
 - Bacterial antigens
 - Toxins

Countermeasures

- Antimicrobials
 - Inhibit synthesis of cell wall
 - Damage cytoplasmic membrane
 - Alter metabolism of nucleic acid
 - Inhibit protein synthesis
 - Modify energy metabolism

Pathogenic Adaptations

- Suppression of immune response
- Antigenic changes
- Development of resistance

Acquired Immunodeficiency Syndrome (AIDS)

- Syndrome caused by a viral disease
 - Human immunodeficiency virus (HIV)
 - Depletes the body’s Th cells
- Incidence
 - Worldwide
 - 5 million per year
 - United States
 - About 31,000 cases per year

Acquired Immunodeficiency Syndrome (AIDS)

- Effective antiviral therapies have made AIDS a chronic disease
- Epidemiology
 - Blood-borne pathogen
 - Increasing faster in women than men
Acquired Immunodeficiency Syndrome (AIDS)

- Pathogenesis
 - Retrovirus
 - Genetic information is in the form of RNA
 - Contains reverse transcriptase to convert RNA into double-stranded DNA
 - Integrase

Human Immunodeficiency Virus (HIV)

Concept Check

1. What is not characteristic of hypersensitivity?
 - A. Specificity
 - B. Immunologic mechanisms
 - C. Inappropriate or injurious response
 - D. Prior contact not needed to elicit a response

2. Which hypersensitivity is caused by poison ivy?
 - A. Type I
 - B. Type II
 - C. Type III
 - D. Type IV

3. Which is not an autoimmune disease?
 - A. MS
 - B. Pernicious anemia
 - C. Transfusion rxn.
 - D. Ulcerative colitis
 - E. Goodpasture disease

4. An alloimmune disorder is:
 - A. Erythroblastosis fetalis
 - B. IDDM
 - C. Myxedema
 - D. All of the above

5. A positive HIV antibody test signifies that the:
 - A. Individual is infected with HIV and likely so for life
 - B. Asymptomatic individual will progress to AIDS
 - C. Individual is not viremic
 - D. Sexually active individual was infected last weekend

6. The mechanism of hypersensitivity for drugs is:
 - A. Type I
 - B. Type II
 - C. Type III
 - D. Type IV

Stress and Disease

Chapter 8
Stress

- A person experiences stress when a demand exceeds a person’s coping abilities, resulting in reactions such as disturbances of cognition, emotion, and behavior that can adversely affect well-being.

Dr. Hans Selye (1946)

- Worked to discover a new sex hormone
- Injected ovarian extracts into rats
- Witnessed 3 structural changes:
 - Enlargement of the adrenal cortex
 - Atrophy of thymus and other lymphoid structures
 - Development of bleeding ulcers in the stomach and duodenum

Dr. Hans Selye

- Dr. Selye witnessed these changes with many agents (cold, surgery, restraint). He called these stimuli “stressors.”
- Many diverse agents caused same general response:
 - general adaptation syndrome (GAS)

General Adaptation Syndrome (GAS)

- Three stages
 - Alarm stage
 - Arousal of body defenses (fight or flight)
 - Stage of resistance or adaptation
 - Mobilization contributes to fight or flight
 - Stage of exhaustion
 - Progressive breakdown of compensatory mechanisms
 - Onset of disease

GAS Activation

- Alarm stage
 - Stressor triggers the hypothalamic-pituitary-adrenal (HPA) axis
 - Activates sympathetic nervous system (SNS)
- Resistance stage
 - Begins with the actions of adrenal hormones
- Exhaustion stage
 - Occurs if stress continues and adaptation is not successful

Stress Response

- Nervous system
- Endocrine system
- Immune system
Neuroendocrine Regulation

- **Catecholamines**
 - Released from chromaffin cells of the adrenal medulla
 - Epinephrine released
 - α-adrenergic receptors
 - α₁ and α₂
 - β-adrenergic receptors
 - β₁ and β₂
 - Mimic direct sympathetic stimulation

Cortisol and Immune System

- **Glucocorticoids and catecholamines**
 - Decrease cellular immunity while increasing humoral immunity
 - Increase acute inflammation
 - Th2 shift

Stress Response

- **β-Endorphins**
 - Proteins found in the brain that have pain-relieving capabilities
 - Released in response to stressor
 - Inflamed tissue activates endorphin receptors
 - Hemorrhage increases levels, which inhibits blood pressure increases and delay compensatory changes
Stress-Induced Hormone Alterations

• Growth hormone (somatotropin)
 – Produced by the anterior pituitary and by lymphocytes and mononuclear phagocytic cells
 – Affects protein, lipid, and carbohydrate metabolism and counters the effects of insulin
 – Enhances immune function
 – Chronic stress decreases growth hormone

• Prolactin
 – Released from the anterior pituitary
 – Necessary for lactation and breast development
 – Prolactin levels in the plasma increase as a result of stressful stimuli

• Oxytocin
 – Produced by the hypothalamus during childbirth and lactation
 – Produced during orgasm in both sexes
 – May promote reduced anxiety

• Testosterone
 – Secreted by Leydig cells in testes
 – Regulates male secondary sex characteristics and libido
 – Testosterone levels decrease because of stressful stimuli
 – Exhibits immunosuppressive activity

Concept Check

• 1. Which is not characteristic of Selye’s stress syndrome?
 – A. Adrenal atrophy
 – B. Shrinkage of thymus
 – C. Bleeding GI ulcers
 – D. Shrinkage of lymphatic organs

• 2. Which characterizes the alarm stage?
 – A. Increased lymphocytes
 – B. Incr. SNS act.
 – C. Incr. PSN act.
 – D. Incr. eosinophils

• 3. CRF is released by the:
 – A. Adrenal medulla
 – B. Adrenal cortex
 – C. Anterior pituitary
 – D. Hypothalamus

• 4. Stress is defined as any factor that stimulates:
 – A. Posterior pituitary
 – B. Anterior pituitary
 – C. Hypothalamus to release CRF
 – D. Hypothalamus to release ADH
• 5. Which would not occur in response to stress?
 – A. Increased systolic BP
 – B. Increased Epi
 – C. Constriction of pupils
 – D. Increased adrenocorticoids

• 6. Which would not be useful to assess stress?
 – A. Total cholesterol
 – B. Esosinophil count
 – C. Lymphocyte count
 – D. Adrenocorticoid levels