Components of the Hematologic System

Main functions
- Delivery of substances needed for cell metabolism
- Removal of wastes
- Defense against microorganisms and injury
- Maintain acid-base balance

Components of the Hematologic System

Composition of blood (~6 quarts)
- Plasma
 - _________ of the blood volume
 - Organic and inorganic elements
- ____________
 - Albumins
 - Function as carriers and control plasma oncotic press.
 - Globulins
 - Carrier proteins and immunoglobulins (antibodies)
 - Fibrinogen
 - Functions in blood clotting

Components of the Hematologic System

Composition of blood
- Cellular components (~45%)
 - __________ (red blood cells)
 - Carry O₂ and remove CO₂
 - 120-day life cycle
 - __________ (white blood cells)
 - Defend the body against infection and remove debris
 - Granulocytes (neutrophils, eosinophils, basophils)
 - Agranulocytes (monocytes and lymphocytes)
 - __________ (platelets)
 - Disk-shaped cytoplasmic fragments
 - Essential for blood clotting

Composition of Whole Blood

Blood Cells
Leukocytes

Evaluation of the Hematologic System

- Tests of bone marrow function
 - Bone marrow aspiration
 - Bone marrow biopsy
 - Measurement of bone marrow iron stores
 - Differential cell count
- Blood tests
 - Large variety of tests

Concept Check

1. Which is not a component of plasma?
 - A. Colloids
 - B. Electrolytes
 - C. Glucose
 - D. Platelets

2. Which is the most abundant protein in blood?
 - A. Fibrinogen
 - B. Albumins
 - C. Globulins
 - D. Hormones

3. The purpose of EPO:
 - A. Decrease maturation of RBCs
 - B. Detect hypoxia
 - C. Control RBC production
 - D. Control platelet size

4. About how many times more RBCs than WBCs are there in a mm3 of blood?
 - A. 15
 - B. 90
 - C. 100
 - D. 1000

5. Which of the following are agranulocytes?
 - A. Mast cell
 - B. Lymphocyte
 - C. Monocyte
 - D. Reticulocyte
 - E. B and C are correct

Alterations of Hematologic Function
Chapter 20

Anemia

- Physiologic manifestation
 - Reduced oxygen-carrying capacity
- Variable symptoms depending on severity and body's ability to compensate
- Classic anemia symptoms
 - Fatigue, weakness, dyspnea, and pallor
Macrocytic-Normochromic Anemias

- **Pernicious anemia (PA)**
 - Caused by a lack of intrinsic factor (IF) (_____________ cells in stomach)
 - Results in vitamin B₁₂ deficiency
 - Loss of appetite, abdominal pain, beefy red tongue (atrophic glossitis), icterus, and splenic enlargement
 - PA associated with incr. alcohol intake, hot tea, smoking
 - Treatment: Vit. B₁₂ throughout life

Microcytic-Hypochromic Anemias

- **Iron deficiency anemia (IDA)**
 - Most common type of anemia worldwide
 - Due to:
 - Inadequate dietary intake of _________
 - Pregnancy
 - Blood loss (2-4ml/day- ulcer, hiatal hernia, colitis, menorrhagia)
 - Iron malabsorption (chronic diarrhea, celiac disease)
 - Progression of iron deficiency causes:
 - Brittle, thin, coarsely ridged, and spoon-shaped nails (koilonychia)
 - Red, sore, and painful tongue (glossitis)

Microcytic-Hypochromic Anemias

- **Pathophysiology**
 - Iron use in body for Hb and storage for future Hb
 - Iron is recycled and it is important to maintain a balance.
 - Blood loss → disrupts the balance
 - Normal Hb = ~12-18g/dl
 - When Hb levels drop to 7-8g/dl patients seek medical attention
- **Treatment**
 - Determine source of blood loss
 - Iron replacement therapy

Quantitative Alterations of Leukocytes

- **Leukocytosis**
 - Leukocytosis is a normal protective physiologic response to physiologic stressors

- **Leukopenia**
 - Leukopenia is not normal and not beneficial
 - A low white count predisposes a patient to infections

Granulocytosis (Neutrophilia)

- Neutrophilia is evident in the first stages of an infection or inflammation
- If the need for neutrophils increases beyond the supply, immature neutrophils (banded neutrophils) are released into the blood
Granulocytosis (Neutrophilia)
- This premature release is detected in the manual WBC differential and is termed a shift to the left
- When the population returns to normal, it is termed a shift to the right

Monocytes
- **Monocytosis**
 - Poor correlation with disease
 - Usually occurs with neutropenia in later stages of infections
 - Monocytes are needed to phagocytize organisms and debris
- **Monocytopenia**
 - Very little known about this condition

Lymphocytes
- **Lymphocytosis**
 - Acute viral infections
 - Epstein-Barr virus
- **Lymphocytopenia**
 - Immune deficiencies, drug destruction, viral destruction

Infectious Mononucleosis
- Acute, self-limiting infection of B-lymphocytes transmitted by saliva through personal contact
- Commonly caused by the Epstein-Barr virus (EBV)—85%
 - B cells have an EBV receptor site
 - Others viral agents resembling IM
 - Cytomegalovirus (CMV), hepatitis, influenza, HIV

Infectious Mononucleosis
- Symptoms: fever, sore throat, swollen cervical lymph nodes, increased lymphocyte count, and atypical (activated) lymphocytes
- Serious complications are infrequent (<5%)
 - Splenic rupture is the most common cause of death
- >50% lymphocytes and at least 10% atypical lymphocytes
- Diagnostic test
 - Monospot qualitative test for heterophilic antibodies
- Treatment: ____________
Leukemias

- Malignant disorder of the blood and blood-forming organs
- Excessive accumulation of leukemic cells
- Acute leukemia
 - Presence of undifferentiated or immature cells, usually blast cells
- Chronic leukemia
 - Predominant cell is mature but does not function normally
- Lymphocytic leukemia
- Myeloid leukemia

Leukemias

- Acute lymphocytic leukemia (ALL)
 - 80% of all childhood leukemias (~81% remission)
- Acute myelogenous leukemia (AML)
 - One of most common leukemias in adults
- Chronic myelogenous leukemia (CML)
 - Myeloproliferation in bone marrow, middle aged mostly
- Chronic lymphocytic leukemia (CLL)
 - Most benign and slow growing; affects elderly

Pathophysiology

- Immature hematopoietic cells → leukemic cells
- Leukemic cells multiply → crowding other cells
 → abnormal RBCs, WBCs, platelets and decreased numbers

Leukemias

- Signs and symptoms of leukemia
 - Anemia, bleeding, purpura, petechiae, ecchymosis, thrombosis, hemorrhage, DIC, infection, weight loss, bone pain, elevated uric acid, and liver, spleen and lymph node enlargement

Disorders of Platelets

- Platelet count <150,000/mm3
 - <50,000/mm3—hemorrhage from minor trauma
 - <15,000/mm3—spontaneous bleeding
 - <10,000/mm3—severe bleeding

Disorders of Platelets

- Thrombocytopenia
 - Causes
 - Hypersplenism, autoimmune disease, hypothermia, and viral or bacterial infections that cause disseminated intravascular coagulation (DIC), HIT
 - ITP (Idiopathic thrombocytopenia)
 - I- immune system makes antibodies against platelets
 - T- trapped platelets appear in spleen and liver
 - P- phagocytosis causes thrombocytopenia
 - Symptoms:
 - Nosebleed, oral bleeding
 - Purpura
 - Petechiae

Disorders of Platelets

- Immune thrombocytopenic purpura (ITP)
 - IgG antibody that targets platelet glycoproteins
 - Antibody-coated platelets are sequestered and removed from the circulation
 - Acute form of ITP that often develops after a viral infection is one of most common childhood bleeding disorders
 - Manifestations: Petechiae and purpura, progressing to major hemorrhage
Disseminated Intravascular Coagulation (DIC)

- Complex, acquired disorder in which clotting and hemorrhage simultaneously occur
- DIC is result of increased protease activity in blood caused by unregulated release of thrombin with subsequent fibrin formation and accelerated fibrinolysis
- Endothelial damage is primary initiator of DIC
Blood Flow

- Cardiac cycle
- Diastole
- Systole
- Phases of the cardiac cycle

Blood Flow and Cardiac Cycle

The Coronary Vessels

Conduction System of the Heart

Cardiac Output
Systemic Circulation

- Arteries
- Arterioles
- Capillaries
- Venules
- Veins

Structure of Blood Vessels

- Lumen
- Tunica intima
- Tunica media
- Tunica externa (adventitia)

Endothelium

- Endothelium
- Basal lamina
- Elastic lamina
- Smooth muscle
- Adventitia (connective tissue)

Structure of Blood Vessels

Concept Check

1. Oxygenated blood flows through:
 A. SVC
 B. Pulmonary veins
 C. Pulmonary arteries
 D. Coronary veins

2. In the normal cardiac cycle which of the following occurs? (more than one is correct)
 A. RA and RV contract together
 B. The 2 atria contract together, while the 2 ventricles relax
 C. The 2 ventricle contract together, while the 2 atria relax.
 D. Both the ventricles and the atria contract simultaneously to increase cardiac output.
3. The normal heartbeat is initiated by:
 - A. Coronary sinus C. SA node
 - B. AV bundle D. AV node

4. Which does not significantly affect HR:
 - A. SNS nerves C. AV valves
 - B. PSN nerves D. ACh

5. Which is the correct sequence of the pulmonary circuit?
 a. Pulm. Veins
 b. Pulm. Arteries
 c. Lungs
 d. RV
 e. LA

Diseases of the Veins

Deep venous thrombosis (DVT)
- Obstruction of venous flow leading to increased venous press.
- Factors
 - Poor circulation → Venous stasis (immobile, age, CHF)
 - Venous endothelial damage (drugs, trauma)
 - Hypercoagulable states (inherited states, _______)
- Venous thrombi are more common than arterial due to low pressure in veins

Diseases of Veins

Diseases of Veins

Diseases of the Arteries and Veins

- **Hypertension (HT)**
 - consistent elevation of BP
 - Systolic > 140 mmHg; Diastolic > 90 mmHg
 - **Primary HT**
 - aka essential or idiopathic HT
 - Genetic and environmental factors
 - Affects 92% to 95% of individuals with HT
 - **Secondary HT**
 - Caused by a systemic disease that raises PR or CO

Understanding HT

1. Kidneys → renin into blood
2. Renin converts angiotensin to angiotensin I (in liver)
3. Angiotensin I → Angiotensin II (in lungs)
 - Angiotensin II - potent VC
4. Angiotensin II → constriction in arterioles and secretion of aldosterone
5. Aldosterone → Na⁺ and H₂O retention
6. Retained Na⁺ and H₂O → incr. blood vol.
7. VC → increased PR
8. Incr. blood vol. and PR → HT
Complications
- Can occur late in the disease
- Can attack any organ
- CAD, angina, MI, arrhythmias, sudden death

Location, location, location
Symptoms depend on location of vessel damage
- Brain — __________, __________
- Retina — __________
- Heart — __________
- Kidneys — proteinuria, edema → __________

Arteriosclerosis
- Chronic disease of the arterial system
- Abnormal __________ and __________ of vessel walls
- __________ and collagen fibers migrate to the tunica intima
- Results in narrowing of lumen

Atherosclerosis
- Most common form of arteriosclerosis
- Thickening and hardening is caused by accumulation of lipid-laden macrophages in the arterial wall
- __________ development

Atherosclerosis
- Progression
 - Damaged endothelium
 - Cellular proliferation & macrophage migration
 - Macrophages → foam cells that accumulate fat
 - Fatty streak (lesion)
 - Fibrous plaque due to SMC proliferation
Atherosclerosis

Peripheral Arterial Disease
- Atherosclerotic disease of arteries that perfuse limbs
- Intermittent claudication

Coronary Artery Disease
- Any vascular disorder that narrows or occludes the coronary arteries
- Atherosclerosis is the most common cause
 - Risk factors
 - Dyslipidemia (abnormal blood levels of lipids)
 - Hypertension
 - Cigarette smoking
 - Diabetes mellitus
 - Obesity/sedentary lifestyle

Coronary Artery Disease
- Nontraditional risk factors
 - Markers of inflammation and thrombosis
 - C-reactive protein (C-rp), fibrinogen, protein C, and plasminogen activator inhibitor
 - Hyperhomocysteinemia (lack of enz. to breakdown homocysteine)
 - Infection (*Clamydia pneumoniae, H. pylori*)

Coronary Artery Disease
- Myocardial infarction (MI)
 - Sudden and extended obstruction of the myocardial blood supply
 - Subendocardial MI - if thrombus breaks up before necrosis, only will involve myocardium under endocardium
 - Transmural MI - if thrombus permanently lodged in vessel, infarct will extent throughout heart wall

Myocardial Infarction
- Pathophysiology
 - Cellular injury – cardiac cells can w/stand ________ min. of ischemia prior to cell death
 - Ischemic cells loose contractile ability (pH and electrolyte changes)
 - Cellular death – 20 min. of ischemia \(\rightarrow \) irreversible damage and cells death
 - release of CPK from damaged cardiac cells
- Symptoms:
 - crushing chest pain (unrelenting indigestion)
 - decr. BP
 - SNS stimulation (rel. of _____________) \(\rightarrow \) diaphoresis and peripheral VC
Myocardial Infarction

- EKG changes evident within 30-60 sec.
- Gross changes take hours

Disorders of Heart wall

- **Acute Pericarditis**
 - Causes:
 - Viruses or idiopathic (90%)
 - MI, cardiac surgery, autoimmune
 - Symptoms
 - Severe retrosternal pain
 - Phrenic nerve irritation
 - Treatment: anti-inflammatory drugs, colchicine

Disorders of the Myocardium

- **Cardiomyopathies** – disorders that affect myocardium
 - Dilated cardiomyopathy (congestive cardiomyopathy)
 - Due to extensive damage of ventricular myocardial cells
 - Gives heart globular shape
 - __________ of all 4 chambers (increased P and V)
 - Thrombosis
 - Left-sided heart failure → right-sided heart failure
 - → low CO → valve insufficiency → heart failure →
 A-fib → decreased CO

Cardiomyopathy

- **Mitral Valve Prolapse (MVP)**
 - One or more __________ billow up (prolapse)
 - Degeneration of valve leaflet → thickening → regurgitation into LA
 - Most common valve disorder in US (1-3% adults)
 - Asymptomatic typically; good prognosis
 - Only small no. of high-risk individuals → complications (endocarditis, stroke, sudden death)

Acute Pericarditis

- pericardial membranes inflammed, exudate/ shaggy fibers may form
Arrhythmias
• Disturbance of the heart rhythm
• Range from occasional “missed” or rapid beats to severe disturbances that affect pumping ability of heart
• Caused by an abnormal firing of __________ (pacemaker) or conduction system

Dysrhythmias
• Examples:
 – Tachycardia (HR > 100-120 bpm)
 – Flutter (HR =250- 300)
 – Fibrillation (HR > 300)
 – Bradycardia (HR < 60 bpm)
 – Premature ventricular contractions (PVCs)
 – Premature atrial contractions (PACs)

Congestive Heart Failure
• __________ cannot pump effectively
• Left – sided heart failure usually occurs first
• Due to infarction, mitral stenosis (blood vol. low), V or P overload, arrhythmias
• LV function decreases → blood backs up in pulmonary veins → pulmonary edema
• Dysfunction of myocardium → activate RAA and SNS → remodel of ventricle
• Treatment: ACE inhibitors, beta blockers, Angiotensin II blockers slow progression

Concept Check
• 1. Factors in the dev. of atherosclerotic plaque include all of the following except:
 – A. accumulation of LDL
 – B. SMC proliferation
 – C. calcification
 – D. decreased elasticity
 – E. complement activation
• 2. Complications of uncontrolled HT include all of the following except:
 – A. CVAs
 – B. Anemia
 – C. Renal injury

Matching:
___ 4. aortic stenosis A. Clot detached from vessels wall
___ 5. cardiomyopathy B. Lesion of atherosclerosis
___ 6. infarction C. Assoc. with RHD
___ 7. mitral stenosis D. Death of myocardial tissue
___ 8. fibrous plaque E. Disease of myocardium
___ 9. thromboembolism F. Dec. blood flow from LV due to narrowed aortic semilunar valve

• 3. Most common cause of CAD is:
 A. Myocarditis C. Atherosclerosis
 B. Hypoglycemia D. Vasospasm