Bio217: Pathophysiology Class Notes
Professor Linda Falkow

Unit VII: Respiratory System Disorders

Chapter 25: Structure & Function of Pulmonary System
Chapter 26: Alterations of Pulmonary Function

Structure and Function of the Pulmonary System

Chapter 25

Structures of the Pulmonary System

• Conducting Airways
• Pulmonary circulation
• Lungs
 • Lobes (three on right, two on left)
 • Segments
 • Lobules

Structures of the Pulmonary System

• Conducting airways (no gas exchange)
 • Upper airways
 • Nasopharynx
 • Oropharynx
 • Laryngopharynx
 • Lower airways
 • Trachea
 • Bronchi
 • Terminal bronchioles

Structures of the Pulmonary System

<table>
<thead>
<tr>
<th>GENERATIONS</th>
<th>CONDUCTING AIRWAYS</th>
<th>RESPIRATORY UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>TRACHEA</td>
<td>NONRESPIRATORY</td>
</tr>
<tr>
<td>16</td>
<td>BRONCHIAL BRANCHES</td>
<td>RESPIRATORY</td>
</tr>
<tr>
<td>24</td>
<td>SUBSEPTAL BRANCHES</td>
<td>BRONCHOLES</td>
</tr>
<tr>
<td>32</td>
<td>BRONCHOLES</td>
<td>AIRWAY BRANCHES</td>
</tr>
</tbody>
</table>
Structures of the Pulmonary System

- Gas-exchange airways
 - Respiratory bronchioles
 - Alveolar ducts
 - Alveoli
- Epithelial cells
 - Type I alveolar cells
 - Alveolar structure
 - Type II alveolar cells
 - Surfactant production

Pulmonary and Bronchial Circulation

- Pulmonary circulation has lower pressure than systemic circulation (~1/5 pressure)
- Pulmonary artery divides and enters lung at hilus
- Each bronchus and bronchiole has an accompanying artery or arteriole
- Alveolocapillary (respiratory) membrane
 - Formed by the shared alveolar and capillary walls
 - Gas exchange occurs across this membrane

Pulmonary gas exchange – how much O₂ and CO₂ trade places in alveoli?

Ventilation to perfusion ratio (V/Q) - depends on amt. of air in alveoli (ventilation) to amt. of air in blood (perfusion)

Normal lung: Alveoli rec. air ~4 L/min
- Capillaries supply blood ~5 L/min
 = 4:5 = 0.8

Chest Wall and Pleura

- Chest wall
 - Skin, ribs, and intercostal muscles
 - Thoracic cavity
- Pleura
 - Serous membrane
 - Parietal and visceral layers
 - Pleural space (cavity)
- Pleural fluid
Function of the Pulmonary System

• Ventilation
 - Mechanical movement of gas or air into and out of lungs
 - Minute volume (L/min) = total volume of air entering lungs/min
 \[\text{Ventilatory rate (breaths/min) \times TV}\]
 - Alveolar ventilation = vol. of gas/unit time that reaches gas exchange portion of lung
 \[= (\text{TV - dead space}) \times \text{ventilatory rate}\]
 - PFTs (Pulmonary function tests) measure lung volumes and rates to diagnose disorders

Ventilation

- Neurochemical control
 - Respiratory center
 - Dorsal respiratory group – rhythm of respiration
 - Ventral respiratory group – becomes active during increased respiration
 - Pneumotaxic center – limits amt. of inspired air
 - Apneustic center – prevents overinflation of lungs
 - Central chemoreceptors - respond to pH, pCO2, pO2
 - Peripheral chemoreceptors (carotid & aortic bodies)
 - Respond to decre. pO2

Mechanics of Breathing

- Alveolar surface tension and ventilation
 - Function of surfactant
- Elastic properties of the lung and chest wall
 - Elastic recoil – lungs return to resting state
 - Compliance – distensibility of lung and chest wall (opposite of elasticity)
- Airway resistance – depends on R and flow
- Work of breathing – effort of muscles for ventilation
Mechanics of Breathing

Gas Transport

Gas Transport

Gas Transport

Gas Transport

Gas Transport

Gas Transport
1. The cilia of the bronchial wall:
 - A. Ingest bacteria
 - B. Trigger sneeze reflex
 - C. Trap and remove bacteria
 - D. Propel mucus and trapped bacteria toward oropharynx

2. As the terminal bronchioles are approached:
 - A. Epithelium becomes thicker
 - B. Mucus-producing glands increase
 - C. Epithelium becomes thinner
 - D. Cartilage support increases
 - E. SMC layer thickens

3. The left primary bronchus:
 - A. Is shorter and wider than the right
 - B. Is symmetrical to the right
 - C. Is more vertical than the right bronchus
 - D. Is more angled than the right

4. Alveoli are excellent for gas exchange due to:
 - A. Large surface area
 - B. Thin epithelial layer
 - C. Extensive vascularization
 - D. All of the above

5. When the diaphragm and ext. intercostals contract:
 - A. Intrathoracic V increases
 - B. Intrathoracic P increases
 - C. Intrathoracic V decreases
 - D. None of the above

6. A shift to the right in the O2-Hb dissociation curve:
 - A. Prevents O2 release at cell level
 - B. Cause O2 to bind tighter to Hb
 - C. Improves O2 release at cell level
 - D. Both a and b

7. The DRG of neurons:
 - A. Sets the automatic rhythm of respiration
 - B. Modifies the rhythm of respiration
 - C. Is active when increase ventilation is required
 - D. None of the above

Signs and Symptoms of Pulmonary Disease

- **Dyspnea**
 - Subjective sensation of uncomfortable breathing
 - Orthopnea
 - Dyspnea when a person is lying down
 - Paroxysmal nocturnal dyspnea (PND)

- **Abnormal breathing patterns**
 - Kussmaul respirations (hyperpnea) – due to increased exercise or metabolic acidosis
 - Cheyne-Stokes respirations – alternating deep and shallow breathing (due to slowed blood flow to brainstem)

- **Hypoventilation**
- **Hypercapnia**
- **Hyperventilation**
- **Hypocapnia**
- **Cough**
 - Acute cough
 - Chronic cough
- **Hemoptysis – cough up blood**
 - (not to be confused with hematemesis= vomiting blood)
Pulmonary Edema

- Pulmonary edema = excess fluid in lungs
 - Most common cause is heart disease (LV fails → increased pulm. cap. hydrostatic pressure; inhalation of toxic gas; lymphatic system blockage)

- Atelectasis = collapse of lung tissue
 - Tends to occur after surgery, post-op patients breathe shallowly and develop thick secretions (use incentive spirometer to increase collateral ventilation between adjacent alveoli)

Pleural Abnormalities

- Pneumothorax
 - air in pleural cavity due to rupture of visceral or parietal pleura

Pleural Abnormalities

- Pleural effusion – fluid in pleural space
 - Transudative (watery) or exudative (high WBCs) effusion
 - Hemothorax - blood in pleural cavity
 - Empyema – pus in pleural cavity

Conditions Caused by Pulmonary Disease or Injury

- Abscess formation and cavitation
- Abscess
- Consolidation
- Cavitation
- Pulmonary fibrosis
- Excessive amount of fibrous CT in the lung

Pulmonary Disorders

- Progression of ARDS:
- Assault to pulmonary system
- Respiratory distress
- Decreased lung compliance (distensibility of lung and chest wall)
- Severe respiratory failure
Pulmonary Disorders

- Postoperative respiratory failure
- Atelectasis
- Pneumonia
- Pulmonary edema
- Pulmonary emboli
- Prevention
 - Frequent turning, deep breathing, early ambulation, air humidification, and incentive spirometry

Obstructive Pulmonary Disease

- Airway obstruction that is worse with expiration
- Common signs and symptoms
 - Dyspnea and wheezing
- Common obstructive disorders
 - Asthma
 - Emphysema
 - Chronic bronchitis

Obstructive Pulmonary Disease

- Airway obstruction that is worse with expiration
- Common signs and symptoms
 - Dyspnea and wheezing
- Common obstructive disorders
 - Asthma
 - Emphysema
 - Chronic bronchitis

Respiratory Tract Infections

- Pneumonia – acute infection of lung (lower resp. tract) that impairs gas exchange usually
- Classified:
 - Origin: bacterial, viral, fungal
 - Location
 - Bronchopneumonia (distal airways & alveoli)
 - Lobar pneumonia (in part or entire lobe)
- Type
 - Primary (inhale or aspirate pathogen)
 - Secondary (may occur after lung damage following chemical insult or from bacteria in blood)

Pneumococcal Pneumonia
Common causal microbes

- **Streptococcus pneumoniae** (aka Pneumococcus)
 - high mortality rate in elderly
- **Mycoplasma pneumoniae**
 - common in young people esp. living in close quarters
- **Influenza** – most common viral pneumonia
 - Legionella species → Legionnaire’s disease
 - Pseudomonas aeruginosa, S. aureus – most common nosocomial infectious agents

Pathophysiology

- Aspiration of secretions (oro- and laryngopharynx)
- Inhale microbes from infected persons (cough, sneeze.)
- Lines of defense
 - microbes expelled from naso- and oropharynx
 - alveolar macrophages
 - Activation of inflammatory and immune responses
 - alveolar edema

Characteristics

- **Bacterial (Streptococcal)**
 - sudden onset chill, temp 102 to 104°F
 - follows upper resp. tract infection
- **Viral (Influenza)**
 - cough, cyanosis, high fever, substernal pain, headache, myalgia
- **Avian Influenza (H5N1)**
 - highly pathogenic virus caused infection in poultry in Asia and infected humans in 1997
 - at first infected humans who had close contact with birds
 - several cases mutated virus spread from human to human
 - Fever, cough, sore throat, muscle aches, eye infections
- **Swine flu (H1N1)**
 - Pandemic flu April 2009 – June 2010
 - similar symptoms to seasonal flu
 - CDC reported ~61 million cases (12,500 deaths)

Respiratory Tract Infections

- **Tuberculosis** – infectious disease that affects mostly lungs, can involve other systems
 - Due to exposure to Mycobacterium tuberculosis
 - Airborne transmission – cough or sneeze spreads infected droplets
 - Tubercle formation (granulomatous lesion) – macrophages ingest bacilli → tubercles → caseous necrosis and scar tissue
 - Positive tuberculin skin test (PPD)
 - Once bacilli isolated in tubercles → immunity and dormancy

Pulmonary Embolism

- Detection of pulmonary embolism
 - Venous thrombosis
 - Release of vasoactive substances
 - Pulmonary infarction
 - Reduced cardiac output
 - Hypoxic vasoconstriction
 - Pulmonary edema
 - Shock

- Treatment options:
 - Anticoagulation
 - Diuretics and vasopressors
Pulmonary Embolism

- **Pulmonary embolism** – blockage of pulmonary vessel by embolism (blood clot, tissue, lipid, foreign object or air)
- Risk factors – conditions → blood clotting
 - (venous stasis, hypercoagulability, injury to endothelial lining, genetic)
- Pathophysiology
 - Massive occlusion → blockage of pulmonary artery
 - Embolism w/ infarction – large enough to cause tissue death
 - Embolism w/out infarction – no permanent damage if no infarction clots are dissolved.

Pulmonary Vascular Disease

- **Pulmonary hypertension**
 - Mean pulmonary artery pressure 5 to 10 mm Hg above normal or above 20 mm Hg
 - Primary pulmonary HT (PPH)
 - Idiopathic, rare
 - Malfunction of endothelium → incr. VC (thromboxane) and decr. VD (prostacyclin)
 - Vessel wall changes (thick & fibrous) → VC → incr. R → incr. P in pulmonary arteries
 - Secondary pulmonary HT
 - Due to respiratory disease (hypoxemia, arterial VC)
 - Pulmonary venous HT – due to CHF

Pulmonary Hypertension

- Most clots dev. in lower extremities, DVT.
- Clinical:
 - Sudden onset chest pain, dyspnea, tachypnea, tachycardia
 - → severe pulmonary HT and shock
- Treatment:
 - Prevention is best
 - Leg elevation, ambulation, calf compression
 - Anticoagulants (heparin) and antithrombotics
 - Surgery (thrombectomy)

Lung Cancer

Bronchogenic carcinomas

- Arise from epithelium of resp. tract
- Epidemic in US (most common cause of cancer death)
- Most common cause is cigarette smoking
 - Heavy smokers have a 20 times greater chance of developing lung cancer than nonsmokers
 - Smoking is related to cancers of the larynx, oral cavity, esophagus, and urinary bladder
- Environmental or occupational risk factors are also associated with lung cancer

Non–small cell lung cancer

- Squamous cell carcinoma (slow)
- Adenocarcinoma (moderate)
- Large cell carcinoma (undifferentiated, rapid)
- Small cell carcinoma (very rapid)
Lung Cancer

- **Pathophysiology**
 - Tobacco smoke >30 carcinogens → 80-90% of lung cancers
 - Genetic predisposition
 - Both lead to genetic abnormalities in bronchial cells
 - Loss of tumor suppressing genes
 - Tumor progression due to growth factors
 - Mucosa suffers from chronic exposure to smoke → metaplasia → carcinoma → spreads in lung → metastasis (brain, bone, liver)

- **Evaluation and treatment**
 - TNM classification
 - Tumor
 - Nodal involvement
 - Metastasis
 - Surgery, chemotherapy, and radiation

Matching:

1. Kussmaul resp.
 - a. Alveolar collapse
2. Hemptysis
 - b. Cough blood
3. Cyanosis
 - c. Decr. arterial oxygenation
4. Cheyne-Stokes
 - d. Apnea, incr. vent., apnea
5. Atelectasis
 - e. Incr. vent. rate, effortless TV, no exp. pause

6. Pulmonary edema may be caused by abnormal
 - A. Capillary hydrostatic press.
 - B. Capillary oncotic pressure
 - C. Cap. Permeability
 - D. All of the above

7. pneumonia
 - a. Originate from thrombi in legs
8. TB
 - b. Caused by air pollutants
9. chronic bronchitis
 - c. Caused by aerobic bacillus
10. pulmonary emboli
 - d. May be caused by mycoplasms

11. The metastasis of lung squamous cell carcinoma is:
 - A. Late
 - B. Very early and widespread
 - C. Early
 - D. Never seen