Unit III: Cell Proliferation: Cancer

Biology, Clinical Manifestations, and Treatment of Cancer

Chapter 9

Cancer Epidemiology Chapter 10

Cancer

- Derived from Greek word for crab, karkinoma
- Malignant tumor
- Tumor
 - Also referred to as a neoplasm new growth

Benign vs. Malignant Tumors

Benign	Malignant
Grow slowly	Grow rapidly
Well-defined capsule	Not encapsulated
Not invasive	Invasive
Well differentiated	Poorly differentiated
Low mitotic index	High mitotic index
Do not metastasize	Can spread distantly (metastasis)

Mitotic index = rate of growth

Classification and Nomenclature

• Benign tumors

- Named according to the tissues from which they arise, and include the suffix "-oma"
 - Lipoma
 - Hemangioma
 - Leiomyoma
 - Chondroma

Classification and Nomenclature

- Malignant tumors
 - Named according to the tissues from which they arise
 Malignant epithelial tumors are referred to as
 - carcinomas
 - Adenocarcinoma (from glandular epithelium)
 - Malignant CT tumors are referred to as sarcomas
 - Rhabdomyosarcomas (from skeletal muscle)

Classification and Nomenclature

- Cancers of lymphatic tissue are lymphomas
- Cancers of blood-forming cells are leukemias
- Carcinoma in situ (CIS)
 - Epithelial malignant tumors that have not broken through BM or invaded the surrounding stroma

Stages of Cancer Spread

- Stage 1: Confined to organ of origin
- Stage 2: Locally invasive
- Stage 3: Spread to lymph nodes
- Stage 4: Spread to distant sites
- CIS special case

Tumor Markers

- Tumor cell markers (biologic markers) are substances produced by cancer cells or that are found on plasma cell membranes, in the blood, CSF, or urine
 - Hormones (Epi in blood, adrenal medullary tumor)
 - Enzymes

- Antibodies

- Genes
- Antigens (PSA in blood, prostate cancer)

Viruses and Cancer

- Implicated
 - Hepatitis B and C viruses
 - Epstein-Barr virus (EBV)
 - Kaposi's sarcoma herpesvirus (KSHV)
 - Human papillomavirus (HPV)
 - Human T cell leukemia-lymphoma virus (HTLV)

Bacterial Cause of Cancer

- Helicobacter pylori
 - Chronic infections are associated with:
 - Peptic ulcer disease
 - Stomach carcinoma
 - Mucosa-associated lymphoid tissue lymphomas

Inflammation and Cancer

- Chronic inflammation is an important factor in development of cancer
 - Cytokine release from inflammatory cells
 - Free radicals
 - Mutation promotion
 - Decreased response to DNA damage

Tumor Spread

• Direct invasion of contiguous organs – Known as local spread

- Metastases to distant organs

 Lymphatics and blood
- Metastases by way of implantation

Local Spread

- Invasion
 - Cellular multiplication
 - Mitotic rate vs. cellular death rate
 - Mechanical pressure
 - Release of lytic enzymes
 - Decreased cell-to-cell adhesion
 - Increased motility
 - Intravasation
 - Extravasation

Three-Step Theory of Invasion

- Tumor cell attachment
 - Fibronectin and laminin
- Degradation or dissolution of the matrix – Enzymes
- Locomotion into the matrix
 Invadopodia (pseudopodia)

HeLa cell

- a <u>cell</u> type in an <u>immortal cell line</u> used in research
- one of the oldest, most commonly used human cell lines
- derived from <u>cervical cancer</u> cells taken from <u>Henrietta Lacks</u>
- patient eventually died of her cancer on October 4, 1951
- cell line was found to be remarkably durable
- cells propagated by <u>George Otto Gey</u>
- first human cell line to prove successful in vitro, which was a scientific achievement for the benefit of science
- neither Lacks nor her family gave Gey permission

 (at that time, permission was neither required nor sought)
- HeLa cells were used by <u>Jonas Salk</u> to test the first polio vaccine in the 1950's

Concept Check

• 1. Neoplasia a. abnormal proliferating cells w/ higher degree of autonomy

- 2. Anaplasia b. lack of differentiation, primitive cells
- 3. Autonomy c. cancer cells' independence from normal cell controls
- 4. Tumor markers d. substances produced by cancer cells

• 5. Which characterizes cancer cells?

- A. Poorly differentiated
- B. Metastasis
- C. Infiltrative growth – D. Poor cell cohesiveness
- E. All of the above
- 6. Which is/are not malignant?
 - A. Glioma
 - B. Adenocarcinoma - C. Rhabdomyoma
 - D. Leukemia
 - E. A and C

• 7. Metastasis is:

- A. Alteration in normal cell growth
- B. Growth of benign or or malignant cells
- C. Mutational
- D. Ability to establish a secondary neoplasm at a new site
- 8. CIS is:
 - A. Preinvasive
 - B. Glandular or epithelial lesion
 - C. Teratoma
 - D. Carcinoma that has broken through BM
 - E. Both a and b are correct

Cancer Epidemiology

Chapter 10

Environmental Risk Factors

Increased

- Tobacco
- Radiation
 - Ionizing
 - UV
- Alcohol · Sexual Behavior
- Diet
- Obesity
- Occupational Hazards
- Electromagnetic Fields ?

Decreased

- * Exercise * Proper Diet

Environmental Risk Factors

- Tobacco
 - Multipotent carcinogenic mixture
 - Linked to cancers of the lung, lower urinary tract, aerodigestive tract, liver, kidney, pancreas, cervix
 - Linked to myeloid leukemia

Environmental Risk Factors

- Ionizing radiation
 - Emission from x-rays, radioisotopes, and other radioactive sources
 - Exposure causes cell death, gene mutations, and chromosome aberrations
 - Bystander effects
 - Poor gene repair
 - Changes in gap junction intercellular communication

Environmental Risk Factors

- Ultraviolet radiation
 - Causes basal cell carcinoma, squamous cell carcinoma, and melanoma
 - Principal source is sunlight
 - Ultraviolet A (UVA) and ultraviolet B (UVB)
 - Promotes skin inflammation and release of free radicals

Environmental Risk Factors

- Alcohol consumption
 - Risk factor for oral cavity, pharynx, hypopharynx, larynx, esophagus, and liver cancers
 - Cigarette/alcohol combination increases a person's risk

Environmental Risk Factors

- Sexual reproductive behavior

 Carcinogenic types of human papilloma virus
 - High-risk HPV

Environmental Risk Factors

- Physical activity
 - Reduces cancer risk
 - Decreases insulin and insulin-like growth factors
 - Decreases obesity
 - Decreases inflammatory mediators and free radicals
 - Increased gut motility

Environmental Risk Factors

- Occupational hazards
 - Substantial number of occupational carcinogenic agents
 - Asbestos
 - Dyes, rubber, paint, explosives, rubber cement, heavy metals, air pollution, etc.
 - Radon

Environmental Risk Factors Environmental Risk Factors • Diet • Electromagnetic fields -Xenobiotics - Carcinogenic? • Toxic, mutagenic, and carcinogenic chemicals in Are they, or aren't they? food · Activated by phase I activation enzymes · Defense mechanisms - Phase II detoxification enzymes • Examples - Compounds produced in the cooking of fat, meat, or proteins - Alkaloids or mold by-products

Environmental Risk Factors

- Obesity
 - Correlates with the body mass index (BMI)
 - Adipose tissue is active endocrine and metabolic tissue

Environmental Risk Factors

· Obesity

- In response to endocrine and metabolic signaling, adipose tissue releases free fatty acids
 - Increased free fatty acids gives rise to insulin resistance and causes chronic hyperinsulinemia
 - Correlates with colon, breast, pancreatic, and endometrial cancers

Clinical Manifestations of Cancer

- Pain
 - Little or no pain is associated with early stages of malignancy
 - Influenced by fear, anxiety, sleep loss, fatigue, and overall physical deterioration
 - Mechanisms
 - Pressure, obstruction, invasion of sensitive structures, stretching of visceral surfaces, tissue destruction, and inflammation

Clinical Manifestations of Cancer

Fatigue

- Subjective clinical manifestation
- Tiredness, weakness, lack of energy, exhaustion, lethargy, inability to concentrate, depression, sleepiness, boredom, and lack of motivation
- Suggested causes
 - Sleep disturbance, biochemical changes (cytokines), secondary to disease and treatment, psychosocial factors, level of activity, nutritional status, and environmental factors

Clinical Manifestations of Cancer

- Syndrome of cachexia (Gr. "bad condition")
 - Most severe form of malnutrition
 - Present in 80% of cancer patients at death
 - Includes:
 - Anorexia, early satiety, weight loss, anemia, asthenia, taste alterations, and altered protein, lipid, and CHO metabolism

Clinical Manifestations of Cancer

- Anemia
 - A decrease of hemoglobin in the blood
 - Mechanisms
 - Chronic bleeding resulting in iron deficiency, severe malnutrition, medical therapies, or malignancy in bloodforming organs

Clinical Manifestations of Cancer

- Leukopenia and thrombocytopenia
 - Direct tumor invasion to the bone marrow causes leukopenia and thrombocytopenia
 - Chemotherapy drugs are toxic to the bone marrow
- Infection
 - Risk increases when the absolute neutrophil and lymphocyte counts fall

Cancer Treatment

- Chemotherapy
 - Use of nonselective cytotoxic drugs that target vital cellular machinery or metabolic pathways critical to both malignant and normal cell growth and replication
 - Goal
 - Eliminate enough tumor cells so body's defense can eradicate any remaining cells

Cancer Treatment

- Chemotherapy
 - Compartments
 - 1: cells undergoing mitosis and cytokinesis
 - 2: cells capable of entering the cell cycle in G_1 phase
 - 3: cells not dividing or have irreversibly left cell cycle
 - -Cells in compartment 3 will die a natural death

- Interferes with cellular growth and signaling

Cancer Treatment

- Immunotherapy
 - Theoretically, antitumor responses can selectively eliminate cancer cells while sparing normal cells
 - Immune memory is long lived
 - Numerous immunologic mechanisms are capable of rejecting different types of cancer
 - Biologic response modifiers (BRMs)

Cancer Treatment

- Other forms of immunotherapy
 - Interferon administration
 - Antigens
 - Effector cell lymphokines
 - Monoclonal antibodies

Side Effects of Cancer Treatment

- Gastrointestinal tract
- Bone marrow
- Hair and skin
- Reproductive tract

Concept Check

- 1. Likely cause for fatigue in cancer patients:
 - A. Biochemical changes due to treatment
 - B. Muscle loss
 - C. Pychologic factors
 - D. All of the above
- 2. The pain experience with cancer:
 - A. Affects the patient only in the early stages
 - B. Occurs in bone metastasis
 - C. Due to tissue necrosis
 - D. Both b and c are correct