Bio217 Pathophysiology Class Notes Professor Linda Falkow Fall 2012

- Unit 2: Mechanisms of Defense

 Chapter 5: Innate Immunity: Inflammation & Wound Healing
 - Chapter 6: Adaptive Immunity
 - Chapter 7: Infection & Defects in Mechanisms of Defense
 - Chapter 8: Stress and Disease

Innate Immunity: Inflammation & Wound Healing

Chapter 5

Immunity

- · First line of defense
 - Innate resistance (or natural immunity)
 - Includes natural barriers
- Second line of defense
 - Innate resistance (or natural immunity)
 - Inflammation
- Third line of defense
 - Adaptive (acquired) immunity
 - Involves "memory"

First Line of Defense

- Physical and mechanical barriers
 - Skin
 - Mucous Membranes linings of the GI, genitourinary, and respiratory tracts Mechanical removal:
 - Sloughing off of cells (dead skin cells)
 - Coughing and sneezing
 - Flushing from urinary system
 - Vomiting
 - Mucus and cilia (mucus escalator)

First Line of Defense

- Biochemical barriers
 - Enzymes synthesized and secreted in saliva, tears, ear wax, sweat, and mucus (lysozymes)
 - Antimicrobial peptides (acidic)
 - Normal bacterial flora on the skin and in gut

Second Line of Defense

- Inflammatory response
 - Response to cellular injury
 - Local manifestations
 Heat, swelling, pain, loss of function
 - Vascular response
 - Vasodilation (VD), blood vessels become leaky, WBCs adhere to inner walls of vessels & migrate through vessels

Inflammation

- Benefits of Inflammation
 - Limit tissue damage and control the inflammatory process
 - Prevent and limit infection and further damage
 - Initiate adaptive immune response
 - Initiate healing

Inflammation

Microscopic level - characterized by fluid accumulation and cells at site of injury

Plasma Protein Systems

· - used in mediation of inflammation

- Complement system
 - Circulating proteins that can destroy pathogens directly
- Coagulation system
 - Forms a clot that stops bleeding
- Kinin system
 - Bradykinin causes VD, pain, SMC contraction, vascular permeability, and leukocyte chemotaxis

Cellular Mediators of Inflammation

- Cellular components
 - found in blood and surrounding tissues
 - Cytokines (ILs and IFNs)
 - Mast cells
 - Endothelial cells & platelets
 - Phagocytes (neutrophils, macrophages, eosinophils)
 - Lymphocytes (NK cells) → attack virus and cancer infected cells

Cytokines

- Interleukins (IL)
 - Produced by macrophages and lymphocytes in response to a pathogen or stimulation by other products of inflammation
- Interferon (INF)
 - Protects against viral infections
 - Produced and released by virally infected host cells in response to viral RNA

Similar effect to leukotrienes and platelet activation

Endothelial Cells & Platelets

Endothelial cell lining (of blood vessels)
 – prevents blood clotting normally

- during inflammation allows leukocyte migration
- Platelets

- activation results in degranulation (release of serotonin) and to stop bleeding

Phagocytes

- Neutrophils (PMNs)
 - Predominate in early inflammatory responses
 - arrive 6-12 hr after injury
 - Ingest bacteria, dead cells, and cellular debris
 - Cells are short lived and become a component of the purulent exudate

Phagocytes

- Monocytes and macrophages
 - Monocytes produced in bone marrow → blood
 → inflammatory site, where they develop into macrophages
 - Macrophages typically arrive at the inflammatory site 24 hours or later after neutrophils

Phagocytes

- Eosinophils
 - Mildly phagocytic
 - Duties
 - Main defense against parasites and regulation of vascular mediators from mast cells

Lymphocytes

- Natural killer (NK) cells
 - Lymphoid tissue derived
 - Function against cells infected with viruses and cancer

Local Manifestations of Acute Inflammation

- Due to vascular changes and leakage of circulating components into the tissue
 - Heat
 - Redness
 - Swelling
 - Pain

Exudative Fluids

- Serous exudate
 - Watery exudate: indicates early inflammation
- Fibrinous exudate

 Thick, clotted exudate: indicates more advanced inflammation
- Purulent exudate – Pus: indicates a bacterial infection
- Hemorrhagic exudate
 - Exudate contains blood: indicates bleeding

Systemic Changes due to Inflammation

- Fever
 - Caused by exogenous and endogenous pyrogens \rightarrow act on hypothalamus
- Leukocytosis

 Increased numbers of circulating leukocytes
- Increased plasma protein synthesis
 Produced in liver

Chronic Inflammation

- Inflammation lasting 2 weeks or longer
- Often related to an unsuccessful acute inflammatory response

Resolution and Repair

- Resolution
 Regeneration of tissue to normal structure & fcn
- Repair
 - Extensive damage \rightarrow scar tissue forms

- Primary intention
 - Wounds that heal under conditions of minimal tissue loss
- Secondary intention
 - Wounds that require a great deal more tissue replacement
 - Open wound

Dysfunctional Wound Healing

- Dysfunction during inflammatory response
 - Hemorrhage
 - Fibrous adhesion
 - Infection
 - Excess scar formation

Dysfunctional Wound Healing - Keloid (scar) formation

Dysfunctional Wound Healing

- Wound disruption
 - Dehiscence
 - Wound pulls apart at the suture line - Excessive strain and obesity are causes
 - Increases risk of wound sepsis

Concept Check

- 1. Inflammation:
 - A. Confines and destroys injurious agents
 - B. Stimulates and enhances immunity
 - C. Promotes healing
 - D. All of the above
- 2. Which of the following is not a local manifestation of inflammation?
 - A. Swelling
 - B. Pain
 - C. Heat and redness
 - D. Leukocytosis

- 3. The inflammatory response:
 - A. Prevents blood from entering injured tissue
 - B. Elevates body temp. to prevent spread of infection
 - C. Prevents formation of abscesses
 - D. Minimizes injury and promotes healing

• 4. Scar tissue is:

- A. Nonfunctional collagen and fibrous tissue
- B. Functional tissue that follows wound healing
- C. Regenerated tissue formed in area of injury
- D. Fibrinogen with entrapped phagocytes and neurons

Mostly litems and derived items © 2008 by Mostby. ..., an affitiate of Einvier

Adaptive Immunity

Chapter 6

Adaptive (specific) Immunity

- state of protection against infectious agents mainly

- 3rd line of defense
- Antigens found on infectious agents, environmental substances, cancers
- Specificity of antigens for antibodies
- Memory long lived response
- Antibodies protect individual from infection
- Lymphocytes mediate immune response
 B and T cells

Antigen Presentation

- Located on :
 - infectious agents (viruses, bacteria, parasites)
 - noninfectious env. substances (pollen, food, bee venom)
 - drugs, vaccines, transplanted tissues
- Foreign or "nonself"
 recognized by immune system

Humoral vs Cell Mediated Response

• Humoral immunity

- mediated by memory B cells and plasma cells

- B cells dev. into plasma cells that produce antibodies that attack antigen

- Cell-Mediated immunity
 - T cells remove invading antigens by destruction of infected or damaged cell

Antibodies

- aka immunoglobulins (Ig)
- Produced by plasma cells (mature B cells) in response to exposure to antigen
- Classes of antibodies
 - IgG most abundant class (80-85%),
 major antibody found in fetus & newborn
 - IgA found in blood and secretions
 - IgM largest, produced 1st in initial response to antigen
 - IgE low blood conc., allergic rxn.
 - IgD low conc. in blood, receptor on B cells

Primary and Secondary Responses

- Primary response
 - Initial exposure
 - Latent period or lag phase
 B cell differentiation is occurring
 - After 5 to 7 days, an IgM antibody for a specific antigen is detected
 - An IgG response equal or slightly less follows IgM response

Primary and Secondary Responses

- Secondary response
 - More rapid
 - Larger amounts of antibody are produced
 - Rapidity is caused by presence of memory cells that do not have to differentiate
 - IgM is produced in similar quantities to primary response, but IgG is produced in considerably greater numbers

Monoclonal Antibody

- produced in lab from single B cell that is cloned
- produces known response to antigen
- - high conc. with optimum function
- Used for
 - testing (home and lab)
 - experimental cancer treatments

Active vs Passive immunity

- Active (acquired) immunity produced by host in response to exposure to antigens or immunization (long lived)
- Passive (acquired) immunity preformed antibodies are transferred from donor to recipient (mother to baby) or injection of antibodies to fight a particular infection (temporary)

Concept Check

- 1. An antigen is
 - A. A foreign protein capable of stimulating immune response in healthy person
 - B. A foreign protein capable of stimulating immune response in susceptible person
 - C. A protein that binds with an antibody
 - D. A protein that is released by the immune system
- 2. Antibodies are produced by
 - A. B cells
 - B. T cells
 - C. Plasma cells
- D. Memory cells

• 3. The antibody with the highest concentration in blood is:

- A. IgA
- B. IgD
- C. IgE
- D. IgG
- 4. If a child develops measles and acquires immunity to subsequent infections, the immunity is :
 - A. Acquired
 - B. Active
 - C. Natural
 - D. A and B are correct

• 5. Which cells are phagocytic?

- A. B cells
- B. T cells
- C. T killers
- D. Macrophages
- 6. When an antigen binds to its appropriate antibody:
 - A. Agglutination may occur
 - B. Phagocytosis may occur
 - C. Antigen neutralization may occur
 - D. All of the above

Infection and Defects in Mechanisms of Defense

Chapter 7

Microorganism and Human Relationship

- Mutual relationship
 - Normal flora (supplied nutrients, temp., humidity)
 - Relationship can be breached by injury
- Pathogens circumvent host defenses

Factors for infection include:

- Communicability ability to spread from one individual another and cause disease
- Immunogenicity ability to induce immune response
- Infectivity ability to invade and multiply in the host

Factors for Infection (cont'd)

- Pathogenicity ability of an agent to produce disease
- Mechanism of action how organism damages tissue
- Portal of entry route of infection
- Toxigenicity ability to produce toxins
- Virulence ability of a pathogen to cause severe disease

Classes of Infectious Microorganisms

- Bacteria produce toxins, septicemia
- Viruses use host metabolism to proliferate, disrupt host activities , transform
- Fungi mycoses (yeast or mold)
- Dermatophytes affect integ. system
- Parasites:
 - Protozoa cause of global infections
 - Helminths flukes and worms

Countermeasures

- Vaccines
- Antimicrobials
 - Antimicrobial resistance
 - Can destroy normal flora
 C difficile
 Genetic mutations
 - olnactivation

 - \circ Multiple antibiotic-resistance bacteria
 - (e.g., MRSA)

Immune Deficiencies

- Failure of immune mechanisms of self-defense
- Primary (congenital) immunodeficiency

 Genetic anomaly
- Secondary (acquired) immunodeficiency
 - Caused by another illness
 - More common

Immune Deficiencies (cont'd)

- Clinical presentation
 - Development of unusual or recurrent, severe infections
 - T cell deficiencies
 - B cell and phagocyte deficiencies
 - Complement deficiencies

Acquired Immunodeficiency Syndrome (AIDS)

- Syndrome caused by a viral disease
 - Human immunodeficiency virus (HIV)
 - Depletes the body's Th cells
 - Incidence:
 - Worldwide: 33.4 million (2008)
 - United States: about 56,000 (2008)

Acquired Immunodeficiency Syndrome (AIDS) (cont'd)

- Effective antiviral therapies have made AIDS a chronic disease
- Epidemiology
 - Blood-borne pathogen
 - Heterosexual activity is most common route worldwide
 - Increasing faster in women than men especially in adolescents

Acquired Immunodeficiency Syndrome (AIDS) (cont'd)

- Pathogenesis
 - Retrovirus
 - Genetic information is in the form of RNA
 - Contains reverse transcriptase to convert RNA into double-stranded DNA

<section-header>

AIDS

- Clinical Manifestations
 - Depressed levels T helper cells
 - Opportunistic infections (fungal, bacterial, viral, parasitic)
 - Neoplasms (Karposi sarcoma)
- Treatment
 - reverse transcriptase inhibitors, protease inhibitors
 HAART (highly active antiretroviral therapy)
- Vaccine ??

Hypersensitivity

• Excessive immunologic reaction to an antigen that results in disease or damage to the host after reexposure

Hypersensitivity

- Deleterious effects of hypersensitivity to environmental (exogenous) antigens
- Autoimmunity

Allergy

- Disturbance in the immunologic tolerance of selfantigens
- Alloimmunity
 - Immune reaction to tissues of another individual
 - transient neonatal diseases (HDN)
 - transplant rejection and transfusion reaction

Hypersensitivity

Characterized by the immune mechanism

- Type I
 - IgE mediated
- Type II
 - Tissue-specific reactions
- Type III
- Immune complex mediated
- -Type IV
 - Cell mediated

Hypersensitivity

- Immediate hypersensitivity reactions

 rxn. ccurs in minutes to hours
- Anaphylaxis within minutes
- Delayed hypersensitivity reactions - hours to days

Type I Hypersensitivity

- IgE mediated
- Against environmental antigens
 (allergens)
- Histamine release (mast cells)

Type I Hypersensitivity

- Manifestations
 - Itching
 - Urticaria
 - Conjunctivitis
 - Rhinitis
 - Hypotension
 - BronchospasmDysrhythmias
 - GI cramps & malabsorption

Type I Hypersensitivity

- Genetic predisposition
- Tests
 - Food challenges
 - Skin tests
 - Laboratory tests

Type II Hypersensitivity

- Tissue specific
 - Specific cell or tissue (tissue-specific antigens) is the target of an immune response
 - Drug reactions

Type II Hypersensitivity

- Five mechanisms of how cells is affected:
 - Cell is destroyed by antibodies and complement
 - Cell destruction through phagocytosis
 - Soluble antigen may enter the circulation and deposit on tissues
 - Antibody-dependent cell-mediated cytotoxicity
 - Causes target cell malfunction

Type III Hypersensitivity

- Immune complex mediated
- Antigen-antibody complexes are formed in circulation and later deposited in vessel walls or extravascular tissues
- Not organ specific

Type III Hypersensitivity

Immune complex clearance

- Large-macrophages
- Small—renal clearance
- Intermediate-deposit in tissues

Type III Hypersensitivity

- Serum sickness (Raynaud's rare form)
 - Caused by formation of immune complexes and lodge in tissues (vessels, kidneys, joints)

Arthus reaction

- Observed after injection, ingestion, or inhalation
- Skin reactions after repeated exposure

Type IV Hypersensitivity

- Does not involve antibody
- Cytotoxic T-lymphocytes or lymphokine producing Th1 cells
- Examples
 - Acute graft rejection, skin test for TB, contact allergic reactions (poison ivy), and some autoimmune diseases

Allergy

- Most common hypersensitivity, usually Type I
- Environmental antigens that cause atypical immunologic responses in genetically predisposed individuals
 - Pollens, molds and fungi, foods, animals, etc.
- Allergen is contained within a particle too large to be phagocytosed or is protected by a nonallergenic coat
- Bee Stings

Autoimmunity

- Genetic predisposition
- Breakdown of tolerance

 Body recognizes self-antigens as foreign
- Infectious disease (rheumatic fever, glomerulonephritis)

Autoimmune Examples

- Systemic lupus erythematosus (SLE)
 - Chronic multisystem inflammatory disease
 - Autoantibodies against:
 - Nucleic acids, erythrocytes, coagulation proteins, phospholipids, lymphocytes, platelets, etc.

Autoimmune Examples

- Systemic lupus erythematosus (SLE)
 - Deposition of circulating immune complexes containing antibody against host DNA
 - More common in females
- Clinical manifestations
 - Arthralgias or arthritis (90% of individuals)
 - Vasculitis and rash (70%-80%)
 - Renal disease (40%-50%)
 - Hematologic changes (50%)
 - Cardiovascular disease (30%-50%)

Treatment

- No cure for most autoimmune disorders
- NSAIDS, corticosteroids, immunosuppressant drugs
- IV immune globulin, monoclonal antibodies

Alloimmunity

- Immune system reacts with antigens on tissue of other genetically dissimilar members of same species
 - Transfusion reactions (ABO blood groups)
 - Transplant rejection and transfusion reactions
 Major histocompatibility complex (MHC)
 - Human leukocyte antigens (HLC)
 - Rh incompatibility (Hemolytic disease of newborn)

Concept Check

- •1. What is not characteristic of hypersensitivity?
 - A. Specificity
 - B. Immunologic mechanisms
 - C. Inappropriate or injurious response
 - D. Prior contact not needed to elicit a response
- 2. Which hypersensitivity is caused by poison ivy?
 - A. Type I
 - B. Type II
 - C. Type III D. Type IV

• 3. Which is not an autoimmune disease?

- A. MS
- B. Pernicious anemia
- C. Transfusion rxn.
- D. Ulcerative colitis
- E. Goodpasture disease
- 4. An alloimmune disorder is:
 - A. Erythroblastosis fetalis (HDN)
 - B. IDDM
 - C. Myxedema
 - D. All of the above

• 5. A positive HIV antibody test signifies that the:

- A. Individual is infected with HIV and likely so for life
- B. Asymptomatic individual will progress to AIDS
- C. Individual is not viremic
- D. Sexually active individual was infected last weekend
- 6. The mechanism of hypersensitivity for drugs is:
 - A. Type I
 - B. Type II
 - C. Type III
 - D. Type IV

Stress and Disease

Chapter 8

Stress

 A person experiences stress when a demand exceeds a person's coping abilities, resulting in reactions such as disturbances of cognition, emotion, and behavior that can adversely affect wellbeing.

Dr. Hans Selye (1946)

- Worked to discover a new sex hormone
- Injected ovarian extracts into rats
- Witnessed 3 structural changes:
 - Enlargement of the adrenal cortex
 - Atrophy of thymus and other lymphoid structures
 - Development of bleeding ulcers in the stomach and duodenum

Dr. Hans Selye

- Dr. Selye witnessed these changes with many agents (cold, surgery, restraint). He called these stimuli "stressors."
- Many diverse agents caused same general response:
 - general adaptation syndrome (GAS)

General Adaptation Syndrome (GAS)

- Three stages
 - Alarm stage
 - Arousal of body defenses (fight or flight)
 - Stage of resistance or adaptation
 - Mobilization contributes to fight or flight
 - Stage of exhaustion
 - Progressive breakdown of compensatory mechanisms
 - Onset of disease

GAS Activation

- Alarm stage
 - Stressor triggers the hypothalamic-pituitary-adrenal (HPA) axis
 - Activates sympathetic nervous system (SNS)
- Resistance stage

 Begins with the actions of adrenal hormones
- Exhaustion stage
 - Occurs if stress continues and adaptation is not successful

Stress Response

- Nervous system
- Endocrine system
- Immune system

Neuroendocrine Regulation

- Catecholamines
 - Released from adrenal medulla
 - Epinephrine (80%), Norepinephrine (20%) released
 - Mimic direct sympathetic stimulation
 - Increased cardiac output
 - VD to heart, muscles, brain
 - Bronchodilation

Prepares body to act.

Neuroendocrine Regulation

- Cortisol (hydrocortisone)
 - Adrenocorticotropic hormone (ACTH) stimulates release from adrenal cortex
 - Elevates the blood glucose levels
 - Powerful anti-inflammatory and immunosuppressive agent

Prepares body for action by supplying glucose (energy).

Cortisol and Immune System

- · Glucocorticoids and catecholamines
 - Decrease cellular immunity while increasing humoral immunity
 - Increase acute inflammation
 - Th2 shift

Stress-Induced Hormone Alterations

β-Endorphins

- Proteins found in brain that have pain-relieving capabilities
- Released in response to stressor
- Inflamed tissue activates endorphin receptors
- Hemorrhage increases levels, which inhibits BP increases and delays compensatory changes

Stress-Induced Hormone Alterations

• Growth hormone (somatotropin)

- Produced by anterior pituitary and by lymphocytes and mononuclear phagocytic cells
- Affects protein, lipid, and carbohydrate metabolism and counters effects of insulin
- Enhances immune function
- Chronic stress decreases growth hormone

Stress-Induced Hormone Alterations

- Prolactin
 - Released from the anterior pituitary
 - Necessary for lactation and breast development
 - Prolactin levels in plasma increase as a result of stressful stimuli

Stress-Induced Hormone Alterations

- Oxytocin
 - Produced by hypothalamus during childbirth and lactation
 - Produced during orgasm in both sexes
 - May promote reduced anxiety

Stress-Induced Hormone Alterations

- Testosterone
 - Secreted by Leydig cells in testes
 - Regulates male secondary sex characteristics and libido
 - Testosterone levels decrease because of stressful stimuli
 - Exhibits immunosuppressive activity

Coping

- Manage stressful challenges
- Coping strategies
 - adaptive
 - maladaptive

Concept Check

- 1. Which **is not** characteristic of Selye's stress syndrome?
 - A. Adrenal atrophy
 - B. Shrinkage of thymus
 - C. Bleeding GI ulcers
 - D. Shrinkage of lymphatic organs
- 2. Which characterizes the alarm stage?
 - A. Increased lymphocytes
 - B. Incr. SNS act.
 - C. Incr. PSN act.
 - D. Incr. eosinophils

- 3. CRF (corticotropic RF) is released by the:
 - A. Adrenal medulla
 - B. Adrenal cortex
 - C. Anterior pituitary
 - D. Hypothalamus
- 4. Stress is defined as any factor that stimulates:
 - A. Posterior pituitary
 - B. Anterior pituitary
 - C. Hypothalamus to release CRF
 - D. Hypothalamus to release ADH

• 5. Which would not occur in response to stress?

- A. Increased systolic BP
- B. Increased Epi
- C. Constriction of pupils
- D. Increased adrenocorticoids
- 6. Which would not be useful to assess stress?
 - A. Total cholesterol
 - B. Esosinophil count
 - C. Lymphocyte count
 - D. Adrenocorticoid levels

7. A patient experiences a stressor that activates the stress response. What is a physiological effect seen related to the release of catecholamines (80% epinephrine and 20% norepinephrine) into the bloodstream?

- A. Increased heart rate.
- B. Bronchoconstriction.
- C. Increased insulin release.
- D. Decreased blood pressure.

8. An example of an adaptive coping response to stress is:

- A. Sleeping less
- B. Increased smoking
- C. Seeking social support
- D. Change in eating habits