CELL STRUCTURE AND FUNCTION

CELL PATHOLOGY

Kristen Collins, PTA
Mercer Community College
PTA 112 – Pathology
Cell Structure and Function
Normal Structure

- **Cells**
 - Fundamental unit of living matter
 - Largest components
 - Nucleus
 - Cytoplasm
 - Cell membrane

http://www.uvm.edu/~inquiryb/webquest/fa06/mvogenbe/Animal-Cell.jpg
“Control center” “Brain”
- If it dies... so does the cell
- *Exception*: erythrocytes, platelets

Consists of nucleic acids
- Aggregates = chromatin
- Nucleolus = primarily RNA
- *Mitosis* = dividing of cells
 - Each cell must replicate itself for life to continue
 - *Exception*: Nerve and muscle cells
 - Lost/damaged cells cannot be replaced by cellular division
 - Chromatin restructures, strands of DNA condense into chromosomes
Nucleus

- Nucleic acids
 - DNA = Cellular reproduction/division, genetic material
 - RNA = Controls protein synthesis
 - Protein Synthesis
 - Synthesis in nucleus
 - Essential for maintenance of life
 - Cellular growth, replication, metabolism, respiration
 - Structural elements
Cytoplasm

- Consists of a fluid, that contains structures performing vital functions of the cell

- **Mitochondria**
 - Produce most of body’s energy = adenosine triphosphate (ATP)
 - Sites of cellular respiration
 - # proportional to complexity of cell function

- **Ribosomes**
 - Small granules composed of RNA
 - Involved in protein synthesis
Cytoplasm

- **Endoplasmic reticulum**
 - Vesicles and intercommunicating canals
 - Catabolism of drugs, hormones, and nutrients
 - Synthesis of steroid hormones

- **Golgi apparatus**
 - Synthesizes carbohydrate molecules

- **Lysosomes**
 - Digest
 - Nutrients
 - Foreign/damaged cell material

- **Microfilaments & microtubules**
Cell (Plasma) Membrane

- “External wall”
 - Protects cell from external environment
- Double layer of phospholipids with protein molecules
 - Protein molecules act as receptors, ion channels, carrier for specific substances, transducer of signals
 - ***This way, the plasma membrane regulates the internal environment of the cell
- Structural integrity vital in maintenance of all essential functions
Why should I care about cells?

- cells → tissues → organs → organ systems (functional units)
- Organs systems function together to achieve basic, vital functions
Homeostasis

- Dynamic, steady state of internal balance in face of external environment
HOMEOSTASIS

- **Maintenance**
 - **Structures**
 - Medulla oblongata
 - Vital functions
 - Pituitary gland
 - Regulates function of other glands
 - Reticular formation
 - Controls vital reflexes
 - **Minerals**
 - ...and the water it is dissolved in
 - Essential: Na, Cl, K, Ca, Fe
 - Oligominerals: Mg, Zinc, Copper, Selenium
 - **Oxygen and nutrients**
HOMEOSTASIS

- Alterations in cell’s functional environment produces stress to the cell’s ability to maintain homeostasis
 - If cell can alter mechanics and regain homeostasis… adaptation
 - If cell is unable to adapt… injury occurs
Cell Injury

- Types of cell injury
 - Reversible
 - After stimuli removed, cell returns to origin steady state
 - Short lived, mild
 - Irreversible
 - Causes structural changes to the cell that remain after stimuli removed

- Causes
 - Hypoxia/anoxia
 - Toxins
 - Infection
 - Physical injury
 - Genetic disorders
 - Immune reactions
Cell Aging

- Changes to structure and function that can affect the ability to maintain homeostasis
- Proceeds at different rates dependant upon
 - Extent and number of injuries
 - Wear and tear on the cell
Cell Adaptation

- **Atrophy**
 - \(\downarrow \) cell size

- **Hypertrophy**
 - \(\uparrow \) cell size

- **Hyperplasia**
 - \(\uparrow \) # of cells

- **Metaplasia**
 - \(\rightarrow \) Dysplasia

 \(\rightarrow \) Neoplasia

http://www.anesthesia.org.cn/books/pathophysio/ch0001.files/0008.gif
Disease

- “a pattern of response of a living organism to some form of injury”
- “biologic or psychologic alteration that results in malfunction of a body organ or system”
- “alteration in normal function”
- Homeostasis is not maintained
 - Adaptation may have occurred -> person is not always ill
- Pathogenesis = the way the disease develops
Cell Death

- All cells have a finite lifespan
 - Some are replaceable, some are not
 - Brain death = artificial means are required for a person to sustain life

- Types of cell death
 - Necrosis
 - Apoptosis
Necrosis

- Causes
 - Anoxia
 - Toxins

- Necrotic tissues
 - When dry, become black
 - Attract calcium salts
 - Results in calcification
 - Ex. Atherosclerotic arteries, damaged heart valves
Apoptosis

- Genetically programmed cell death
 - “active cell death”

- Physiological
 - Important in formation of all body parts
 - Lack of
 - = pathology

- Pathological
IMPORTANT CONCEPTS AND TERMINOLOGY
Observation of the occurrence of the disease in populations
- demographics = #s, ages
- prevalence = # cases in a given population
- incidence = # cases per unit of time
- endemic = high prevalence in an area where organism is common

Epidemic = high prevalence where the organism is common

Mortality = death rate

Morbidity = rate of sick to well persons in a community