JOINTS

STRUCTURE AND FUNCTION:

JOINTS

A "connection" between 2 or more bones

A pivot point for bony motion

The "features" of the joint help determine
 - The ROM
 - Degrees of freedom
 - Functional potential of the joint

Axial Skeleton

The Axial Skeleton makes up the central bony axis of the body and is composed of:
 - the skull
 - hyoid bone
 - sternum
 - ribs
 - vertebral column
 - sacrum
 - coccyx
Appendicular Skeleton

- Just as the name suggests, the appendicular skeleton is composed of the appendages or extremities:
 - This includes the supporting structures

Primary Types of Tissue

- Cortical (compact) – outmost portions of bone
 - Strong
 - Dense
 - Absorptive (forces)
- Cancellous (spongy) – inner portions of bone
 - Porous
 - Lightens the bone
 - Redistributes forces & is covered by articular cartilage
Cancellous bone

Hip bone

Diaphysis

Epiphysis (2)
- Proximal
- Distal

Articular cartilage – hyaline cartilage

Periosteum

Medullary canal

Endosteum
Primary Types of Bones

- Five categories
 - Long
 - Sesamoid
 - Irregular
 - Flat
 - Short

Joints

- A "connection" between 2 or more bones
- A pivot point for bony motion
- The "features" of the joint help determine
 - The ROM
 - Degrees of freedom
 - Functional potential of the joint
Joint Classifications

- **Synarthrosis (Fibrous)**
 - Allows little to no movement
 - Sutures in the skull
 - Distal tibiofibular joint

Joint Classifications

- **Amphiarthrosis**
 - Formed by fibro and hyaline cartilage
 - Shock absorbers
 - Allows limited motion

Joint Classifications

- **Diarthrosis**
 - No direct union between the bone ends
 - Synovial fluid contained within a capsule
Joint Classifications

- Diarthrosis (Synovial Joints)
 - Contains fluid-filled cavity between 2 or more bones
 - All synovial joints have 7 common elements

<table>
<thead>
<tr>
<th>What</th>
<th>Why</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synovial fluid</td>
<td>for joint lubrication & nutrition</td>
</tr>
<tr>
<td>Articular cartilage</td>
<td>to spread out and absorb forces</td>
</tr>
<tr>
<td>Articular capsule</td>
<td>to contain the joint</td>
</tr>
<tr>
<td>Synovial membrane</td>
<td>to produce the fluid for the joint</td>
</tr>
<tr>
<td>Capsular ligaments</td>
<td>to limit excessive joint motion</td>
</tr>
<tr>
<td>Blood vessels</td>
<td>to provide nutrients, permit healing to occur</td>
</tr>
<tr>
<td>Sensory nerves</td>
<td>transmit pain and awareness of position (proprioception)</td>
</tr>
</tbody>
</table>

Synovial Joint Classifications

The structure of the joint determines the functional potential for the joint. Most of the names intentionally resemble functional structures!

- Hinge
- Condyloid
- Pivot
- Saddle
- Ellipsoid
- Plane
- Ball-and-Socket

Hinge Joint

<table>
<thead>
<tr>
<th>Degrees of Freedom</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Motions</td>
<td>Flexion and extension</td>
</tr>
<tr>
<td>Mechanical Analogy</td>
<td>Door hinge</td>
</tr>
<tr>
<td>Anatomic Examples</td>
<td>Humero-ulnar joint, interphalangeal joints</td>
</tr>
</tbody>
</table>
Pivot Joint

<table>
<thead>
<tr>
<th>Degrees of Freedom</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Motions</td>
<td>Spinning one member on an axis; Rotation</td>
</tr>
<tr>
<td>Mechanical Analogy</td>
<td>Door knob</td>
</tr>
<tr>
<td>Anatomic Examples</td>
<td>Proximal radioulnar joint</td>
</tr>
</tbody>
</table>

Ellipsoid Joint

<table>
<thead>
<tr>
<th>Degrees of Freedom</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Motions</td>
<td>Flex & Ext, ABD & ADD</td>
</tr>
<tr>
<td>Mechanical Analogy</td>
<td>Flattened convex with concave trough</td>
</tr>
<tr>
<td>Anatomic Examples</td>
<td>Radiocarpal joint</td>
</tr>
</tbody>
</table>

Condyloid Joint

<table>
<thead>
<tr>
<th>Degrees of Freedom</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Motions</td>
<td>Biplanar Motion</td>
</tr>
<tr>
<td>Mechanical Analogy</td>
<td>Spherical convex surface & concave cup</td>
</tr>
<tr>
<td>Anatomic Example</td>
<td>Tibiofemoral joint, MCP joint</td>
</tr>
</tbody>
</table>
Saddle Joints

<table>
<thead>
<tr>
<th>Degrees of Freedom</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Motions</td>
<td>Biplanar, excluding spin</td>
</tr>
<tr>
<td>Mechanical Analogy</td>
<td>Horseback rider on a saddle</td>
</tr>
<tr>
<td>Anatomic Examples</td>
<td>CMC joint of the thumb, Sternoclavicular joint</td>
</tr>
</tbody>
</table>

Plane Joints

<table>
<thead>
<tr>
<th>Degrees of Freedom</th>
<th>Variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Motions</td>
<td>Slide &/or rotation</td>
</tr>
<tr>
<td>Mechanical Analogy</td>
<td>Book sliding or spinning on a table</td>
</tr>
<tr>
<td>Anatomic Examples</td>
<td>Intercarpal joints, intertarsal joints</td>
</tr>
</tbody>
</table>

Ball & Socket Joint

<table>
<thead>
<tr>
<th>Degrees of Freedom</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Motions</td>
<td>Flex & Ext, ABD & ADD, IR & ER</td>
</tr>
<tr>
<td>Mechanical Analogy</td>
<td>Spherical convex surface & concave cup</td>
</tr>
<tr>
<td>Anatomic Examples</td>
<td>Glenohumeral joint and hip</td>
</tr>
</tbody>
</table>
Joint Positions

- Close-packed
 - Surfaces of joint matches perfectly
 - Joint stability is greatest
 - Usually at one extreme end range

- Open-packed
 - All other positions than close-packed
 - Usually in the middle of range of motion

Connective Tissue

- All connective tissues that support the joints of the body are composed of:
 - Fibers
 - Type I: thick, resist elongation
 - Primarily compose ligaments
 - Type II: thinner, less stiff
 - Primarily compose hyaline cartilage
 - Elastic: elastic in nature
 - Have more "give"
 - Ground substance
 - Viscous fluid in which the fibers and cells are embedded
 - Occupies the space between the cells and fibers of connective tissues
 - Cells
 - Responsible for maintenance & repair
Types of Connective Tissue in Joints

- Dense Irregular Connective Tissue
 - Binds bones together
 - Makes up ligaments & external joint capsule
 - Type I collagen
 - Injuries
 - Ankle sprain

- Articular Cartilage
 - Resists compressive and shear forces in articular surfaces
 - Covers the ends of articulating surfaces of bones in synovial joints
 - High % type II collagen content which helps to anchor the cartilage to the bone
 - Injuries
 - Wear & tear decreases its effectiveness in reducing compression leading to OA and joint pain & inflammation.

- Fibrocartilage
 - Provides support & stabilization to joints, resists compression & shear forces
 - Makes up the intervertebral discs and menisci of the knees
 - Multidirectional bundles of type I collagen
 - Injuries
 - Tearing can cause disruption of the integrity of the structure and pain with loss of function
Types of Connective Tissue in Joints

- **Bone**
 - Forms primary supporting structure of the body & a rigid level to transmit the force of muscle to move & stabilize the body
 - Forms internal levers of musculoskeletal system
 - Specialized arrangement of Type I collagen & framework for hard mineral salts
- **Injuries**
 - osteoporosis

Types of Connective Tissue

1. **Dense irregular** (attachment points)
 - Ligaments
 - Joint capsule
2. **Articular cartilage** (ease of movement)
 - Covering at the end of bones of synovial joints
3. **Fibrocartilage** (the shock absorbers)
 - Menisci pleural of “meniscus”
 - Intervertebral discs
4. **Bone** – (the levers in the musculoskeletal system)

<table>
<thead>
<tr>
<th>Types of Connective Tissue that form the Structure of Joints</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanical Function</td>
</tr>
<tr>
<td>Dense irregular</td>
</tr>
<tr>
<td>Articular cartilage</td>
</tr>
<tr>
<td>Fibrocartilage</td>
</tr>
<tr>
<td>Bone</td>
</tr>
</tbody>
</table>

Table 2-1: Types of Connective Tissue that Form the Structure of Joints (Modified from Neumann DA. Kinesiology of the Musculoskeletal System: Foundations for Physical Rehabilitation. 4th ed. Lippincott, 2002. Miller, Table 2-1. Kinesics [currently published}).
Tendons versus Ligaments

- **Tendon**: attaches muscle to bone
 - Collagen fibers are aligned parallel to one another

- **Ligament**: attaches bone to bone
 - Collagen fibers are aligned in irregular crossing patterns