Basic Biomechanics

…the body as a living machine for locomotion…
What is Kinesiology?

Kinesis: “To move”
-ology: “to study:
The study of movement

• What the heck does that mean?
Why do we need Kinesiology?

As health professionals, we must have expert knowledge of all muscle groups in the body
- There are ____ skeletal muscles in the human body

- With that knowledge, we then know how to strengthen, repair, improve, and maintain all body parts
 - Not only the how and what, but the WHY

- If we understand the forces acting on the human body, we can manipulate those forces in treatment procedures so that human performance may be improved and further injury may be prevented
Biomechanics: the study of the mechanics as it relates to the functional and anatomical analysis of the human body.

- **Statics**: involves all forces acting on the body being in balance, resulting in the body being in equilibrium.
- **Dynamics**: involves the study of systems in motion while unbalanced due to unequal forces acting on the body.
Mechanics

- **Dynamics**- moving systems
 - **Kinetics**-
 - Examines the forces acting on the body during movement and the motion with respect to time and forces
 - **Kinematics**-
 - A branch of biomechanics that describes the motion of a body without regard to the forces that produce the motion
Mechanics

- Kinetics
 - Forces that cause, arrest, or modify motion in a system
 - Gravity
 - Muscles
 - Friction
 - External resistance
Mechanics

- Kinematics – Involves the time, space, and mass aspects of a moving system
 - The description of motion

- Osteokinematics: the manner in which bones move
- Arthrokinematics: movements occurring between joint surfaces
Kinematics - Types of Motion

- **Translatory** — Movement of a body in which all of its parts move in the same direction and distance and at the same speed
 - Rectilinear motion = straight line motions (sliding surfaces)
 - Curvilinear motion = curved line of motion (the motion of a ball when tossed)

- **Rotary**
 - the arc of motion around a fixed axis of rotation or a “pivot point”
 - Joints have “pivot points” which are used as reference points from which to measure the range of motion (ROM) of that joint
Terminology

- Required to describe:
 - Movement
 - Position
 - Location of anatomic features
Anatomical Position

- Standing, Upright, Eyes forward, Feet parallel and close together, Arms at side, Palms facing forward

- Standard Reference Point
 - Axis of rotation
 - Planes of motion
 - Actions of muscles are referenced from anatomic position
- **Fundamental position**
 - Same as anatomical, except palms face side of body
Descriptive Terminology

- **Medial – Lateral**
 - Medial: Nearer to the median
 - Lateral: Away from the median

- **Anterior (Ventral) – Posterior (Dorsal)**
 - Anterior: In front of
 - Posterior: In the rear

- **Distal – Proximal**
 - Distal: Away from the trunk
 - Proximal: Towards the trunk

- **Superior – Inferior**
 - Superior: “above” in relation to another structure
 - Inferior: “below” another structure

- **Cranial/Cephalad – Caudal**
 - Cranial/Cephalad: closer to the head
 - Caudal: closer to the feet

- **Superficial – Deep**
 - Superficial: closer to the surface
 - Deep: below the surface
Terminology

- **Origin** - the proximal attachment of a muscle or ligament
- **Insertion** - the distal attachment of a muscle or ligament
- **Prone** - lying face down
- **Supine** - lying face up
Terminology

- Unilateral: Only one side
- Bilateral: Refers to both sides

“Patient has decided to get a bilateral knee replacement”

- Ipsilateral: Same side
- Contralateral: Opposite side

The left arm is ipsilateral to the left leg and contralateral to the right arm
Osteokinematics -

- Motion of bones through a range of motion relative to the 3 cardinal planes of the body and around the axis in that joint
- Planes:
 - Frontal or Coronal
 - Sagittal or Median
 - Horizontal or Transverse
Frontal Plane

- Also referred to as the coronal plane
- Bisects the body from side to side and divides the body into equal front and back halves
 - Side to Side
- Abduction and adduction are movements commonly performed in this plane.
Sagittal Plane

- Bisects the body from front to back, dividing it into right and left symmetrical halves
 - Front to Back
- Movements which generally occur in this plane are flexion, extension, and hyperextension
Transverse Plane

- Also referred to as the horizontal plane
- Divides the body horizontally into superior (upper) and inferior (lower) halves
 - Parallel to the ground
- Rotational movements such as spinal rotation and supination and pronation of the forearm occur in the transverse plane
Osteokinematics

- **Axis of Rotation** = “pivot point”
 - It’s ALWAYS perpendicular to the plane of motion!
- **Degrees of Freedom**
 - The number of planes of motion allowed to a joint
 - The shoulder and hip have 3
 - The elbow and knee have just 1
 - The wrist has 2
Osteokinematics: Fundamental Motions

- **Flexion and Extension:**
 - Flexion = Bending movement of one bone on another; Two segments approaching each other (usually anterior surfaces)
 - Extension = Straightening movement of one bone away from another; Two segments moving away from each other
Osteokinematics: Fundamental Motions

- **ABDuction & ADDuction**
 - ABD = movement away from midline
 - ADD = movement toward midline

- **Rotation**
 - Internal Rotation = anterior surface moving toward midline (medial rotation)
 - External Rotation = anterior surface moving away from midline (lateral rotation)
Osteokinematics: Fundamental Motions

- **Circumduction**
 - Circular motion through 2 planes
 - If a joint can draw a circle in the air, it can circumduct

- **Protraction & Retraction**
 - **Protraction**
 - Translation of bone away from midline in a plane parallel to the ground
 - **Retraction**
 - Translation of bone toward midline in a plane parallel to the ground

http://www.youtube.com/watch?v=rRIz6oOA0Vs&feature=related
Osteokinematics: Fundamental Motions

- **Horizontal ABD & ADD**
 - Shoulder flexed or abducted to 90°
 - Horizontal ABD: movement away from midline
 - Horizontal ADD: movement towards midline

- **Pronation & Supination**
 - Takes place in the forearm with *pronation* turning the palm down and *supination* turning the palm up
Osteokinematics: Fundamental Motions

- **Radial & Ulnar Deviation**
 - Takes place at the wrist with movement toward either the radius or ulna
Osteokinematics: Fundamental Motions

• **Dorsiflexion & Plantar Flexion**
 - Takes place at the ankle with **dorsiflexion** bringing the foot upward and **plantar flexion** pushing the foot down

• **Inversion & Eversion**
 - The sole of the foot faces medially in **inversion** and laterally in **eversion**
Kinematics of Motion

• Movement of the body = translation of the translation of the body’s center of mass
 • Center of Mass/Center of Gravity
Mechanics

- **Arthrokinematics**
 - Manner in which adjoining joint surfaces move in relation to each other or how they fit together
 - helps to improve the movement of the joint
 - Parts may move in
 - the same direction
 - the opposite direction
Fundamental Movements: Joint Surfaces

- **Roll**
 - Multiple points maintain contact throughout the motion

- **Slide**
 - A single point on one surface contacts multiple points throughout the motion

- **Spin**
 - A single point on one surface rotates on a single point on the other surface
Roll & Slide Mechanics

- **Convex on Concave**
 - When a convex joint surface moves on a concave joint surface
 - The roll and slide occur in opposite directions

- **Concave on Convex**
 - When a concave joint surface moves about a stationary convex joint surface
 - The roll and slide occur in the same direction
Kinetics

- The effect of forces on the body
 - Force
 - Any action or influence that moves a body or influences the movement of a body
 - Forces “control” movement of the body
 - Internal
 - Muscle contraction
 - Tension from ligaments
 - Muscle lengthening
 - External
 - Gravity
 - An external load
 - A therapist applying resistance or a free-weight for resistance training
Kinetics

- Torque
 - The internal and external forces acting at a joint
 - The rotational equivalent of force
 - Torque = moment arm x force (resistance)
Mechanics

- Mass
 - Amount of matter that a body contains

- Inertia
 - Property of matter that causes it to resist any change of its motion in either speed or direction
Mechanics

- Mass is a measure of inertia
 - Resistance to a change in motion
Friction

- A force that is developed by two surfaces
Friction

- Tends to prevent motion of one surface across the other
 - The coefficient of friction must be overcome for movement to occur
Friction

- It is easier to move across something once the coefficient of friction has been met.
The Human Body as a Machine
Levers

- **Lever**: a rigid bar that turns about an axis.
 - Force
 - Axis
 - Resistance
- **The “Dog Principle”**
 - “A” in the middle
 - “R” in the middle
 - “F” in the middle
Biomechanical Levers

- Interaction of internal and external forces control movement and posture through a system of levers within the body.
- The body has Three Classes of Levers
 - First Class
 - Similar to a “see saw”
 - Second Class
 - The axis is located at one end to provide “good leverage”
 - Third Class
 - The axis is also at one end but gravity has more “leverage” than muscle meaning that more muscle force is needed to lift a small load
First Class Lever

- Force-Axis-Resistance
 - Axis is in the middle
Biomechanical First Class Lever

- Axis always is in the middle
- Designed for balance

- Distance between axis and resistance (load) will dictate how easy it is to move it
First Class Lever

- FA shorter than RA

- FA longer than RA
Second Class Lever

- **Axis-Resistance-Force**
 - Resistance is in the middle
 - Always increases the effort force
Biomechanical Second Class Lever

- Resistance is in the middle
- Designed for good leverage
 - Small force can lift large load
- Very few examples of 2nd class levers in body
Third Class Lever

- Axis-Force-Resistance
 - Force applied in the middle
 - Always **increases** the effort force
Biomechanical Third Class Lever

- Force is in the middle
- Designed for motion
 - The most common lever in the body because they favor large ranges of motion
 - Favor speed and distance
Factors In Use of Anatomical Levers

- Force Arm: the distance between the axis and the point of force.
- Resistance Arm: The distance between the axis and the point of resistance.
Mechanical Advantage

- Ratio between the force arm and the resistance arm

 Force Arm \div Resistance Arm = Mechanical Advantage

- If quotient >1:
 - FA$>RA$: mechanical advantage in force
 - 1st and 2nd Class

- If quotient <1:
 - FA$<RA$: mechanical advantage in speed and range of motion
 - 1st and 3rd Class: This lever can *not give any mechanical advantage*. Regardless of where you apply the force, the force you apply must always be greater than the force of a load.
Mechanical Advantage

- It takes less force on your part if you apply resistance distally rather than proximally.
- Mechanical Advantage decreases the more distal you go.
(Bio) Mechanical Advantage

- Levers:
 - Origin and insertion of a muscle dictates mechanical advantage
 - If the insertion point of muscle is further away from the **axis (joint)**, this requires a less powerful movement
 - But moves it a smaller distance
Pulleys

• A Pulley
 • A grooved wheel that turns on an axel with a rope or cable riding in the groove

• Function
 • To change the direction of a force (fixed)
 • Majority of pulleys found in the body
 • To increase or decrease the magnitude of a force (moving)
Biomechanical Pulleys

- In the human body, in most cases the pulley is replaced by a bone, cartilage or ligament and the cord is replaced by a muscle tendon.
 - Pulley-like

- The tendon is lubricated in a manner so that it may easily slide over the pulley.
Line of Pull

- A muscle’s line of pull describes the direction of muscular force which can be represented in a vector. *(the motions that are possible)*
- A muscle’s line of pull and the joint’s axis of rotation determines what action/motions a muscle can produce
- **If a muscle crosses a joint, it acts on that joint.**
A Kinesiological Analysis is a Summary of all Components of A Movement

- Anatomy used for the activity
- Directional terminology
- Planes of motion
- Types of bones and joints
 - Types of levers
 - Mechanical advantages
- Types of muscle contractions
- Laws of motion
- Balance, Equilibrium, and Stability
Kinesiology: Form & Function