Elbow & Forearm

How vital is the elbow to our daily lives?
Clarification of Terms

- **The elbow includes:**
 - 3 bones (humerus, radius, and ulna)
 - 2 joints (humeroulnar and humeroradial)
 - Allows for elbow flexion and extension

- **The forearm includes:**
 - 2 bones (radius and ulna)
 - 2 joints (proximal radioulnar joint and distal radioulnar joint)
 - Allows for forearm pronation and supination

- **The interaction among the 4 joints enables the hand to be placed in a nearly infinite number of positions, greatly enhancing the functional potential of the entire UE**

Mansfield, p91-92
4 bones relate to the function of the elbow and forearm:
- Scapula
- Humerus
- Ulna
- Radius
Osteology of the Elbow & Forearm (Bones)...cont

- **Scapula:**
 - Infraglenoid tubercle
 - Supraglenoid tubercle
 - Coracoid process

Lippert, p149
Osteology of the Elbow & Forearm (Bones)...cont

- **Humerus:**
 - Trochlea
 - Capitulum
 - Medial Epicondyle
 - Lateral Epicondyle
 - Lateral Supracondylar Ridge
 - Olecranon Fossa
Osteology of the Humerus

Right Humerus
Anterior Distal Aspect

radial fossa
lateral epicondyle
capitulum
trochlea
medial epicondyle
coronoid fossa
ulnar nerve sulcus
Osteology of the Elbow & Forearm (Bones)...cont

- **Ulna:**
 - Olecranon Process
 - Trochlear Notch
 - Coronoid Process
 - Radial Notch
 - Ulnar Tuberosity
 - Styloid Process
 - Head

Lippert, p150
Ulna
Proximal Anterior Aspect

coronoid process

trochlear (semilunar) notch

olecranon

radial notch
Osteology of the Elbow & Forearm (Bones)...cont

- **Radius:**
 - Head
 - Radial tuberosity
 - Styloid process
 - Fovea

Lippert, p150
Osteology of the Proximal Structures of the Forearm

- Ulna

- Radius
Osteology of the Distal Structures of the Forearm

- Ulna
- Radius

head

styloid process

©2003 wckleinelp
Joint Structure of the Elbow

• Humeroulnar Joint
 ○ Provides most of the structural stability to the elbow through the jaw-like trochlear notch of the ulna interlocking with the spool-shaped trochlea of the humerus
 ○ This hinge-like joint limits motion of the elbow to __________ and ________________

• Humeroradial Joint
 ○ Formed by the ball-shaped capitulum of the humerus with the bowl-shaped fovea of the radius
 ○ This permits continuous contact between the radial head and the capitulum during pronation and supination, as the radius spins about its own axis

Mansfield, p95
Joint Structure of the Elbow...cont

- **Carrying Angle:**
 - With the forearm supinated and elbow fully extended, the forearm projects laterally about 15-20° relative to the humerus. This is normal, but tends to be greater in females.

Lippert, p148-149
Joint Movement of the Elbow

- **Osteokinematics:**
 - Flexion
 - Extension

- **Arthrokinematics:**

 Mansfield, p97
Supporting Structures of the Elbow

- **Anterior Capsule:**
 - Thin connective tissues encloses the humeroulnar joint, humeroradial joint and proximal radioulnar joint

- **Medial Collateral Ligament:**
 - Attaches proximally to the medial epicondyle and distally to the coronoid and olecranon processes, providing stability by resisting valgus forces

- **Lateral Collateral Ligament:**
 - Originates on lateral epicondyle and attaches to the lateral aspect of the proximal forearm, providing stability by resisting varus forces

Mansfield, p96
Joint Structure of the Forearm

- **Proximal Radioulnar Joint:**
 - The head of the radius articulates with the radial notch of the ulna

- **Distal Radioulnar Joint:**
 - The distal end of the radius rotates around the distal end of the ulna

- Functionally, they are considered one joint

- The radioulnar joint is a uniaxial pivot joint allowing only pronation and supination of the forearm

Lippert, p148
Joint Movement of the Forearm

- Osteokinematics:
 - Pronation
 - Supination
Joint Movement of the Forearm... cont

Arthrokinematics:

- The **distal** radius rotates around the ulna which is stationary
- The **distal** radius is larger and broader than the distal ulna

Lippert, p148
• Supination & Pronation
 ○ Shoulder rotation can often be functionally substituted for each motion
 □ But not if the humerus is held tight against the thorax and the elbow is in 90° of flexion
Supporting Structures of the Forearm

- **Annular Ligament:**
 - Thick circular band of connective tissue that wraps around the radial head and attaches it to either side of the radial notch of the ulna.
 - This ring-like structure holds the radial head firmly against the ulna, allowing it to spin freely during pronation/supination.

- **Distal Radioulnar Joint Capsule:**
 - Provides stability to the distal radioulnar joint

- **Interosseous Membrane:**
 - Helps bind the radius to the ulna; serves as a site for muscle attachments, and acts as a mechanism to transmit forces proximally through the forearm

Mansfield, p99
Supporting Structures of the Forearm...cont
Supporting Structures of the Forearm...cont

Interosseous Membrane
Myology of the Elbow & Forearm (Muscles)

- The Muscles of the Elbow & Forearm:
 - Biceps
 - Brachialis
 - Brachioradialis
 - Triceps
 - Anconeus
 - Supinator
 - Pronator teres
 - Pronator quadratus
Myology of the Elbow & Forearm (Muscles)

Biceps Brachii

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Origin</td>
<td>Long Head: Supraglenoid tubercle of the scapula</td>
</tr>
<tr>
<td></td>
<td>Short Head: Coracoid process of the scapula</td>
</tr>
<tr>
<td>Insertion</td>
<td>Bicipital tuberosity of the radius</td>
</tr>
<tr>
<td>Innervation</td>
<td>Musculocutaneous n.</td>
</tr>
<tr>
<td>Action</td>
<td>Elbow flexion, sh flexion and forearm supination</td>
</tr>
<tr>
<td>"tidbit"</td>
<td>"corkscrew" muscle</td>
</tr>
</tbody>
</table>

![Biceps Brachii](image)
Biceps brachii

- How do we stretch the biceps brachii?
- How do we strengthen the biceps brachii concentrically?
- Eccentrically?
- Isometrically?
- Closed chain?
- Open chain?
<table>
<thead>
<tr>
<th>Brachialis</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Origin</td>
<td>Anterior aspect of the distal humerus</td>
</tr>
<tr>
<td>Insertion</td>
<td>Coronoid process of the ulna</td>
</tr>
<tr>
<td>Innervation</td>
<td>Musculocutaneous n.</td>
</tr>
<tr>
<td>Action</td>
<td>Elbow flexion</td>
</tr>
<tr>
<td>“tidbit”</td>
<td>“workhorse” for elbow flexion</td>
</tr>
</tbody>
</table>
Myology of the Elbow & Forearm (Muscles)

<table>
<thead>
<tr>
<th>Brachioradialis</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Origin</td>
<td>Lateral supracondylar ridge of the humerus</td>
</tr>
<tr>
<td>Insertion</td>
<td>Near the styloid process of the distal radius</td>
</tr>
<tr>
<td>Innervation</td>
<td>Radial n.</td>
</tr>
<tr>
<td>Action</td>
<td>Elbow flexion, Pronation or supination of the forearm to the neutral position</td>
</tr>
</tbody>
</table>

![Brachioradialis muscle diagram](image)
Brachialis & Brachioradialis

- How do we stretch the brachialis & brachioradialis?
- How do we strengthen them concentrically?
- Eccentrically?
- Isometrically?
Myology of the Elbow & Forearm (Muscles)

Triceps Brachii

| **Origin** | Long Head: infraglenoid tubercle of the scapula
 | Lateral Head: posterior aspect of the superior humerus, lateral to the radial groove
 | Medial Head: posterior aspect of the superior humerus, medial to the radial groove |
|---------------------|---|
| **Insertion** | Olecranon process of the ulna |
| **Innervation** | Radial n. |
| **Action** | Elbow extension
 | Sh extension: *Long head only* |
Triceps brachii

- How do we stretch the triceps brachii?
- How do we strengthen the triceps brachii concentrically?
- Eccentrically?
- Isometrically?
- Closed chain?
- Open chain?
Anconeus

<table>
<thead>
<tr>
<th>Origin</th>
<th>Posterior aspect of the laterals epicondyle of the humerus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insertion</td>
<td>Olecranon process of the ulna</td>
</tr>
<tr>
<td>Innervation</td>
<td>Radial n.</td>
</tr>
<tr>
<td>Action</td>
<td>Elbow extension?</td>
</tr>
<tr>
<td>“tidbit”</td>
<td>Believed to “clear” the joint space of soft tissue to permit full elbow extension. Too small to create torque for elbow extension.</td>
</tr>
</tbody>
</table>
Myology of the Elbow & Forearm (Muscles)

Supinator

<table>
<thead>
<tr>
<th>Origin</th>
<th>Lateral epicondyle of the humerus and supinator crest of the ulna</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insertion</td>
<td>Lateral surface of the proximal radius</td>
</tr>
<tr>
<td>Innervation</td>
<td>Radial n.</td>
</tr>
<tr>
<td>Action</td>
<td>Forearm supination,</td>
</tr>
</tbody>
</table>
Supinator

- How do we stretch the supinator?
- Strengthen it concentrically? Eccentrically?
Myology of the Elbow & Forearm (Muscles)

Pronator Teres

<table>
<thead>
<tr>
<th>Origin</th>
<th>medial epicondyle of the humerus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insertion</td>
<td>Lateral surface of the midshaft of the radius</td>
</tr>
<tr>
<td>Innervation</td>
<td>Median n.</td>
</tr>
<tr>
<td>Action</td>
<td>Forearm pronation, secondary elbow flexion</td>
</tr>
</tbody>
</table>
Pronator Quadratus

<table>
<thead>
<tr>
<th>Origin</th>
<th>Anterior surface of the distal ulna</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insertion</td>
<td>Anterios surface of the distal radius</td>
</tr>
<tr>
<td>Innervation</td>
<td>Median n.</td>
</tr>
<tr>
<td>Action</td>
<td>Forearm pronation</td>
</tr>
</tbody>
</table>
Pronators

- How do we stretch the pronator muscles?
- How do we strengthen them concentrically? Eccentrically? Isometrically?
Myology of the Elbow & Forearm (Muscles)

- **Anatomical Relationships:**
 - Muscle bellies of biceps, brachialis, and triceps are proximal to the elbow joint, while muscle bellies of brachioradialis, pronator teres, pronator quadratus, and supinator are distal to the elbow joint.
 - Anteriorly lies the biceps, brachialis, brachioradialis, pronator teres, and pronator quadratus.
 - The brachialis is deep to the biceps, except at the distal humerus where it can be palpated on either side of the biceps tendon.
 - The brachioradialis and pronator teres are located superficially.
 - The pronator quadratus is located deep to several wrist and hand tendons.

Lippert, p155
Anatomical Relationships continued:

- Posteriorly, the triceps makes up the entire posterior arm proximal to the elbow joint.
- The long and lateral heads are superficial and the medial head is deep.
- The anconeus is very small and is located superficially on the posterior elbow, just distal to the triceps insertion.
- The supinator lies deep to the wrist extensors and the brachialis.
Myology of the Elbow & Forearm (Muscles)

- **Prime Movers:**

<table>
<thead>
<tr>
<th>Action</th>
<th>Muscle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elbow Flexion</td>
<td>Biceps, brachialis, brachioradialis</td>
</tr>
<tr>
<td>Elbow Extension</td>
<td>Triceps</td>
</tr>
<tr>
<td>Forearm Pronation</td>
<td>Pronator teres, pronator quadratus</td>
</tr>
<tr>
<td>Forearm Supination</td>
<td>Biceps, supinator</td>
</tr>
</tbody>
</table>

Lippert, p157
Summary of Muscle Innervation:

<table>
<thead>
<tr>
<th>Muscle</th>
<th>Nerve</th>
<th>Spinal Segment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brachialis</td>
<td>Musculocutaneous</td>
<td>C5, C6</td>
</tr>
<tr>
<td>Biceps</td>
<td>Musculocutaneous</td>
<td>C5, C6</td>
</tr>
<tr>
<td>Brachioradialis</td>
<td>Radial</td>
<td>C5, C6</td>
</tr>
<tr>
<td>Triceps</td>
<td>Radial</td>
<td>C6, C7</td>
</tr>
<tr>
<td>Anconeus</td>
<td>Radial</td>
<td>C7, C8</td>
</tr>
<tr>
<td>Pronator Teres</td>
<td>Median</td>
<td>C6, C7</td>
</tr>
<tr>
<td>Pronator Quadratus</td>
<td>Median</td>
<td>C8, T1</td>
</tr>
<tr>
<td>Supinator</td>
<td>Radial</td>
<td>C6</td>
</tr>
</tbody>
</table>
Redundancy is a fact of life/function

- Innervation
 - The musculocutaneous n.
 - Supplies the elbow flexors EXCEPT the brachioradialis
 - The radial n.
 - Supplies the elbow extensors
 - The median n.
 - Supplies all the pronators of the forearm
Redundancy is a fact of life/function

- The elbow flexors are innervated by 3 different nerves*
 - Preservation of “hand to mouth” activities
 - The likelihood of all 3 nerves being injured is “slim”

* musculoskeletal n.
 radial n.
 median n.

Mansfield, p103
Common Pathologies

- **Lateral Epicondylitis (Tennis Elbow)**
 - Overuse of common wrist extensor tendon where it inserts due to repetitive wrist extension activities

- **Medial Epicondylitis (Golfer’s Elbow)**
 - Inflammation and overuse of the common flexor tendon at its insertion site due to repetitive wrist flexion activities

- **Little League Elbow**
 - Overuse injury at medial epicondyle due to a repetitive throwing motion, creates valgus stress at elbow

- **Nursemaid’s Elbow**
 - Radial head subluxation due to being picked up by one hand

Lippert, p156-157
• Triceps brachii
• Anconeus
• Teres Major
• Teres Minor
• Infraspinatus
Identify!

- Biceps Brachii
- Brachialis
- Brachioradialis
- Pronator Teres
- Pronator Quadratus
References