What is Kinesiology?

- The study of movement, but this definition is too broad
- Brings together anatomy, physiology, physics, geometry and relates them to human movement
Basic Biomechanics

…the body as a living machine for locomotion…
Mechanics

- The study of forces and motions produced by their actions

Lippert pg 93
Biomechanics

• Mechanical principles applied to
 • Human body
 • Structure of the body
 • Function of the body
Mechanics

- **Static**
 - Forces associated with non-moving or nearly moving systems
Mechanics

- **Dynamics**- moving systems
 - **Kinetics**-
 - Deals with forces causing movement in a system
 - **Kinematics**-
 - Involves the time, space and mass aspects of a moving system
Mechanics

- **Kinematics**-
 - Linear motion (translatory motion)- When all parts of a “body” move in the same direction as every other part
 - Rectilinear motion = straight line motions (sliding surfaces)
 - Curvilinear motion = curved line of motion (the motion of a ball when tossed)
 - Angular motion (rotary motion)- the arc of motion around a fixed axis of rotation or a “pivot point”
 - Joints have “pivot points” which are used as reference points from which to measure the range of motion (ROM) of that joint
Kinematics of Walking

- The hips are moving forward and marked to indicate the curvilinear path that they take in the translatory motion of walking.
Kinematics of Motion

- Movement of the body = the translation of the body’s center of mass
 - Center of Mass/Center of Gravity
Kinematics of Motion: Active versus Passive

- **Active**-
 - Generated by muscle contraction
- **Passive**-
 - Occur due to stresses placed on the tissue other than muscle contraction
 - Gravity
 - Resistance
 - An applied stretch from someone or something else
Kinesiology Terminology
Terminology

- Required to describe:
 - Movement
 - Position
 - Location of anatomic features
Anatomic Position

- Standard Reference Point
 - Axis of rotation
 - Planes of motion
 - Actions of muscles are referenced from anatomic position
Anatomic Position

- Standing in upright position
- Eyes facing forward
- Feet parallel and close together
- Arms at the sides of the body with palms facing forward
Fundamental Position

- Same as anatomic position, EXCEPT…
 - Palms face the side of the body
Terminology

- Deep-
 - toward the inside of the body
- Superficial-
 - Towards the outside of the body
- Origin-
 - the proximal attachment of a muscle or ligament
- Insertion-
 - the distal attachment of a muscle or ligament
Terminology

- **Bilateral**
 - 2 or both sides

- **Unilateral**
 - 1 side

- **Contralateral**
 - Refers to the opposite side of the body

- **Ipsilateral**
 - Refers to the same side of the body
Terminology

- **Medial**
 - Refers to a location towards the midline of the body

- **Lateral**
 - Refers to a location farther from the midline of the body
Terminology

• **Anterior (ventral)**
 • Refers to the front of the body or a position closer to the front

• **Posterior (dorsal)**
 • Refers to the back of the body or a position more towards the back
Terminology

- **Proximal**
 - Towards the trunk

- **Distal**
 - Away from the trunk
Terminology

- **Superior**
 - Indicates the location of a structure is above another

- **Inferior**
 - Indicates the location of a structure is below another
Terminology

Now it’s your turn! Use each of the terms to describe something in the image below:

- Bilateral
- Unilateral
- Contralateral
- Ipsilateral
- Medial
- Lateral
- Anterior (ventral)
- Posterior (dorsal)
- Proximal
- Distal
- Superior
- Inferior
Positions of the Body

- **Supine**
 - Lying on back with legs extended
- **Prone**
 - Lying on stomach
- **Sidelying**
- **Hooklying**
 - Lying on back with hips and knees bent
- **Quadruped**
 - Being on hands and knees (4 points)
Osteokinematics and Arthrokinematics

- **Osteokinematics**
 - Focuses on the manner in which bones move in space

- **Arthrokinematics**
 - Deals with the manner in which the adjoining joint surfaces (bones) move in relation to one another
 - Concave/Convex Rule
 - osteokinematics versus arthrokinematics

Lippert pg 93
Osteokinematics -

- Motion of bones through a range of motion relative to the 3 cardinal planes of the body and around the axis in that joint

- **Planes:**
 - Saggital or Median
 - Flexion & extension
 - Frontal or Coronal
 - ABD & ADD
 - Horizontal or Transverse
 - Rotational motions
Planes of the Body

- **Sagittal:** Divides the body into right and left parts
 - Flexion and extension occur in this plane

- **Frontal:**
 - Divides the body into front and back
 - Abduction and adduction occur in this plane

- **Transverse:** Divides the body into top and bottom parts
 - Rotation occurs in this plane

Lippert pg 27
Osteokinematics

- **Axis of Rotation = “pivot point”**
 - It’s ALWAYS perpendicular to the plane of motion!

- **Degrees of Freedom**
 - The number of planes of motion allowed to a joint
 - The shoulder and hip have 3
 - The elbow and knee have just 1
 - The wrist has 2
Axis of Motion

- Sagittal plane
 - Medial-lateral axis of motion

- Frontal plane
 - Anterior-posterior axis of motion

- Transverse plane
 - Superior-inferior axis of motion
Osteokinematics: Fundamental Motions

- Flexion and Extension:
 - Occur in the sagittal plane around a medial/lateral axis
 - Flexion = motion of one bone approaching the anterior aspect of another bone
 - Extension = opposite of flexion
Osteokinematics: Fundamental Motions

- **ABDuction & ADDuction**
 - ABD = movement away from midline
 - ADD = movement toward midline

- **Rotation**
 - Internal Rotation = anterior surface moving toward midline
 - External Rotation = anterior surface moving away from midline
Osteokinematics: Fundamental Motions

- **Circumduction**
 - Circular motion through 2 planes
 - If a joint can draw a circle in the air, it can circumduct

- **Protraction & Retraction**
 - **Protraction**
 - Translation of bone away from midline in a plane parallel to the ground
 - **Retraction**
 - Translation of bone toward midline in a plane parallel to the ground
Osteokinematics: Fundamental Motions

- **Horizontal ABD & ADD**
 - Shoulder flexed to 90°

- **Pronation & Supination**
 - Takes place in the forearm with *pronation* turning the palm down and *supination* turning the palm up
Osteokinematics: Fundamental Motions

- **Radial & Ulnar Deviation**
 - Takes place at the wrist with movement toward either the radius or ulna
Osteokinematics: Fundamental Motions

- **Dorsiflexion & Plantar Flexion**
 - Takes place at the ankle with *dorsiflexion* bringing the foot upward and *plantar flexion* pushing the foot down

- **Inversion & Eversion**
 - The sole of the foot faces medially in *inversion* and laterally in *eversion*
Arthrokinematics

- Manner in which adjoining joint surfaces move in relation to each other or how they fit together
 - helps to improve the movement of the joint
 - Parts may move in
 - the same direction
 - the opposite direction

Help!
Fundamental Movements: Joint Surfaces

- **Roll**
 - Multiple points maintain contact throughout the motion

- **Slide**
 - A single point on one surface contacts multiple points throughout the motion

- **Spin**
 - A single point on one surface rotates on a single point on the other surface
Roll & Slide Mechanics

- **Convex on Concave**
 - When a convex joint surface moves on a concave joint surface
 - The roll and slide occur in opposite directions

- **Concave on Convex**
 - When a concave joint surface moves about a stationary convex joint surface
 - the roll and slide occur in the same direction

- Here's what happens in the knee...
Kinetics

• The effect of forces on the body
 • Force
 • Any action or influence that moves a body or influences the movement of a body
 • Forces “control” movement of the body
 • Internal
 o Muscle contraction
 o Tension from ligaments
 o Muscle lengthening
 • External
 o Gravity
 o An external load
 • A therapist applying resistance or a
 • free-weight for resistance training
Mechanics

- **Force**
 - Any action or influence that moves an object

- **Vector**
 - A quantity having both force and direction
Kinetics

- **Torque**
 - The rotational equivalent of force
 - Force = Distance between the force exerted and the axis of rotation (moment arm)
 - Torque = moment arm x force (resistance)
Mechanics

- **Mass**
 - Amount of matter that a body contains

- **Inertia**
 - Property of matter that causes it to resist any change of its motion in either speed or direction
Mechanics

- Mass is a measure of inertia
 - Resistance to a change in motion
Friction

- A force that is developed by two surfaces
Friction

- Tends to prevent motion of one surface across the other
 - The coefficient of friction must be overcome for movement to occur
Friction

- It is easier to move across something once the coefficient of friction has been met.
Mechanical Advantage

- Ratio between the
 - force arm
 - Distance between the force and the axis
- and the
 - resistance arm
 - Distance between the resistance and the axis
Mechanical Advantage (MA)

- To determine
 - Length of force arm
 - Length of resistance arm

\[\text{Length of force arm} \div \text{Length of resistance arm} = \text{MA} \]
Mechanical Advantage (MA)

- When the FA is greater than the RA
 - The MA is greater than 1
 - The force arm has more force than the RA
Mechanical Advantage

- It takes less force on your part if you apply resistance distally rather than proximally.
Pulleys

- A Pulley
 - A grooved wheel that turns on an axel with a rope or cable riding in the groove
Pulley

- Function
 - To change the direction of a force
 - To increase or decrease the magnitude of a force

Light Cam Neutral Cam Heavy Cam
Pulley

- Function
 - To increase or decrease the magnitude of a force
 - The load is supported on both segments on either side of the pulley, decreasing effort
Biomechanical Levers

- Interaction of internal and external forces control movement and posture through a system of levers within the body.

- The body has Three Classes of Levers
 - First
 - Similar to a “see saw”
 - Second
 - The axis is located at one end to provide “good leverage”
 - Third
 - The axis is also at one end but gravity has more “leverage” than muscle meaning that more muscle force is needed to lift a small load
Biomechanical Levers

- First Class Lever
 - F - A - R
 - Force, Axis, Resistance
- Designed for balance
 - The head sitting on the cervical vertebrae
Biomechanical Levers

- Second Class Lever
 - \(A \rightarrow R \rightarrow F \)
 - Designed for power
 - Ankle plantar flexors are the perfect example of a second class lever.
 - There is excellent leverage so that the body is easily elevated with relatively little force generated by the plantar flexors of the calf.
Biomechanical Levers

- Third Class lever
 - A – F – R
 - Designed for motion
 - The most common lever in the body because they favor large ranges of motion
 - Favor speed and distance
Line of Pull

- A muscle’s line of pull describes the direction of muscular force which can be represented in a vector. *(the motions that are possible)*

- Before a muscle can act upon a joint, it must first cross that joint.

- If a muscle crosses a joint, it acts on that joint.
Kinesiology: Form & Function