Review Last Lecture
Prosthesis

• A **prosthesis** is a replacement of a body part
• A **prosthetist** is a health care professional who designs, fabricates, & fits prostheses
• **Prostheses include**: dentures, wigs, plastic heart valves, etc
• **PT/PTAs are primarily concerned with limb prostheses & the treatment of patients with UE & LE amputation**
The concept of replacing a missing limb is very old.

- The PT & PTA should be familiar with the characteristics and maintenance of lower-limb prostheses
Foot-ankle assembly

Socket & Suspension component

Shank

Pylon

Foot-ankle assembly
PARTIAL FOOT PROSTHESSES

• **Purpose**: to restore foot function in ambulation and simulate the shape of the missing foot segment

• A patient who has lost one or more toes may just pad the toe box of the shoe to improve appearance
PARTIAL FOOT PROSTHESSES

• **Transmetatarsal amputation**: A socket for the remainder of the foot is affixed to a rigid plate that extends the full length of the inner sole of the shoe. Plate has a cosmetic toe filler. May have a rocker bar on the bottom to assist with late stance.
BELOW KNEE PROSTHESSES

• The patient retains the anatomical knee

• From a prosthetic viewpoint, the Syme’s amputation is similar (amputation just distal to the malleoli with all foot bones removed)

• While the Syme’s amputation limb is longer than the BKA, prostheses for both include:
 – A foot-ankle assembly & socket
 – While the BKA also has a shank & suspension component
Purpose is to:
- restore the general contour of the pt’s foot
- absorb shock at heel strike
- plantarflex in early stance
- and simulate push-off.

Foot-Ankles come in both nonarticulated and articulated
FOOT-ANKLE ASSEMBLY

• **Nonarticulated feet:**
 – most often prescribed in the USA
 – Appears as one piece (no ankle joint)
 – Compared to articulated feet, these are lighter, more durable & more attractive

• **Examples:**
 – solid ankle cushion heel (SACH);
 – stationary attachment flexible endoskeleton (SAFE)
Foot-Ankle Assembly

• **SACH foot**
 – Solid ankle cushioned heel
 – Standard foot for BK prosthesis
 – Cushioned heel (foam/rubber)
 – Wooden keel
 – Bolt
Foot-Ankle Assembly

- **SAFE foot**
 - Stationary attachment flexible endoskeleton
 - A version of the SACH foot
 - A rigid ankle block attached to the posterior keel at 45° mimics ST jt
 - Permits tri-planar mvmt
 - Heavier, more expensive, less durable than SACH
ANKLE-FOOT ASSEMBLY

- **Articulated feet:**
 - manufactured with separate foot and lower shank sections
 - joined by a metal bolt or cable.

- **Examples:**
 - Single-axis feet
 - Multiple-axis feet
Single-axis foot: permits motion only in the sagittal plane about the fixed bolt.

- 2 bumpers limit & control PF & DF
- simpler to control
- Provides stability in stance
ANKLE-FOOT ASSEMBLY

Multiple-axis foot: moves slightly in all planes to permit maximum contact with the walking surface

- heavier and less durable
SHANK

- Purpose is to restore leg length and shape, and transmit body weight from the socket to the foot
- Two types:
 - Exoskeletal
 - Endoskeletal
Shank

- **Exoskeletal** (crustacean): support consists of a rigid material (usually wood), covered with a thin layer of tinted plastic (to match skin color) distally
 - very durable and impervious to liquids and most abrasives (if it has a plastic finish)
SHANK

- **Endoskeletal**: support consists of a rigid pipe (pylon) covered with a resilient material to simulate the contour and color of the contralateral limb
 - more life-like
 - pylon has a mechanism that permits small adjustments for angulation (for ease of walking)
SOCKET

• This is the receptacle for the amputated limb made of custom-molded plastic

• **Reliefs**: concavities within a socket to decrease loading on pressure-sensitive areas
 – fibular head, tibial crest, tibial condyles, & anterodistal tibia

• **Build-ups**: convexities within a socket to increase loading over pressure-tolerant tissues
 – patellar tendon, gastroc belly, tibial and fibular shafts
Socket Alignment on the Shaft

• **Slight Flexion**
 – Prevents genu recurvatum
 – Resists tendency of residual limb to slide down the socket
 – Facilitates contraction of quadriceps muscle

• **Slight Lateral Tilt**
 – Reduces load on fibular head
Socket Liners

• The transtibial socket generally includes a foam liner
 – Cushions limb
 – Facilitates alteration of socket size

• Unlined Sockets
 – Patient still wears a sock, so there is a soft interface
 – Sometimes has a pad in the bottom
 – Good choice for a limb that is stable in size
BK SUSPENSION

- During swing (or any other NWB activity), the prosthesis requires some form of suspension
- Types:
 - Cuff
 - Rubber sleeve
 - Thigh corset
 - Supracondylar brim
BK SUSPENSION

- **Cuff variants:**
 - supracondylar cuff: leather strap encircles the thigh immediately above the femoral condyles
 - fork-strap: fork-shaped elastic strap extends from the anterior portion of the BK shank to a waist belt
BK SUSPENSION

- **Rubber Sleeve Suspension**: tubular component that covers the proximal socket and the distal thigh
 - provides excellent suspension
 - requires 2 strong hands to don
BK Suspension

- **Thigh Corset Suspension:**
 - For pts with very sensitive skin on residual limb
 - Metal hinges attach to the med/lat aspects of socket & to a leather corset that may reach up to the ischial tuberosities
 - Heavy
 - Difficult to don
BK Suspension

• **Supracondylar Brim Suspension**
 – The medial & lateral walls extend above the femoral condyles
 – A medial wedge helps to keep it in place
 – Increases med/lat stability
 – expensive
AK PROSTHESSES

- Consists of: A) foot-ankle assembly
 B) shank
 C) knee unit
 D) socket
 E) suspension device

- Foot-ankle assembly and shank are same as those that are used with BK prostheses
AK Prostheses

A. Foot:
 - The SACH is the most commonly used for AK

B. Shank:
 - Either exoskeletal or endoskeletal may be used
• Commercial units are described according to 4 features:
 – 1. Axis
 – 2. Friction mechanism
 – 3. Extension aid
 – 4. Mechanical stabilizer
C. KNEE UNITS – 1. Axis system

– The thigh piece can be connected to the shank by either...

– a **single-axis hinge**: permits flexion and extension at a point correlating to the anatomic axis of the knee

 • most common
 • OR...
C. KNEE UNITS – 1. Axis System

- **Polycentric linkage**: mechanism that permits the momentary axis of knee flexion to change through the arc of motion
 - increases knee stability
C. KNEE UNITS – 2. Friction Mechanisms

- **Friction mechanism:**
 - Changes the knee swing by modifying the speed of knee motion during the various parts of swing phase
 - Adjusts knee swing according to cadence
C. KNEE UNITS – 2. Friction Mechanism

- **Constant friction**: mechanism that applies uniform resistance throughout the swing phase
- **Variable friction**: greater friction is applied at early and late swing
C. KNEE UNITS – 2. Friction Mechanisms

- **Medium**: the medium through which the resistance is applied influences performance. Several types:
 - **sliding friction**: consists of solid structures that resist motion by moving up against each other
 - Most common medium
C. KNEE UNITS – 2. Friction Mechanism

- **Fluid friction**: consists of a cylinder (hydraulic is oil-filled, pneumatic is air-filled) in which a piston connected to the knee hinge moves up and down. These units automatically compensate for changes in walking speed.
C. KNEE UNITS

• **Microprocessor**
 – Computer chip provides a more fluid response to changes of cadence
 – Most advanced
 – Expensive
C. KNEE UNITS – 3. Extension Aids

- **Extension aid**: mechanism designed to assist prosthetic knee extension during the latter part of swing phase. May consist of
 - elastic webbing placed *externally* across the knee
 - elastic strap or coiled spring *within* the unit
C. KNEE UNIT – 4. STABILIZERS

• Most units do not have a special device to increase stability

• the patient controls the knee action through hip motions (in addition to the alignment of the knee in relation to other components of the prosthesis).

• Those available are…
C. KNEE UNIT – 4. STABILIZERS

- **manual lock**: prevents knee flexion
- **friction brake**: resists knee flexion during early stance, commonly through a spring-loaded wedge
D. SOCKETS

- Several types designed to emphasize loading on pressure tolerant tissues
 - Ischial tuberosity
 - Gluteal musculature
 - Sides of the thigh
 - Distal end of residual limb (to a lesser degree)

- Care must be taken to avoid pressure over the pressure intolerant tissues
 - pubic symphysis
 - perineum
D. SOCKETS:

- **Quadrilateral socket:**
 - posterior shelf for the ischial tuberosity and glut
 - medial brim same height as posterior shelf
 - anterior wall higher to apply a posterior force
 - lateral wall same as anterior for medlat. stab
D. SOCKETS:

- **Ischial containment**: covers the ischial tuberosity and is relatively narrow in width
 - weight bearing occurs through the sides and bottom of the amputation limb
D. SOCKETS: Alignment & Fit

• Fit and alignment: the socket should fit snugly to resist chafing and maximize control.

• Slight socket flexion desirable for:
 – facilitating contraction of the hip extensors
 – reduce lumbar lordosis
 – permit zone to extend thigh for equal steps
E. SUSPENSION

• Three means of suspension:
 a) total suction
 b) partial suction
 c) no suction
E. SUSPENSION

- **Suction**:
 - Socket is held on by atmospheric pressure (pressure is greater on the outside than on the inside)
 - Air release valve located at the bottom of the socket
 - Requires snug fit
E. SUSPENSION

- **Total suction**: maximum control of the prosthesis without any auxiliary suspension
 - socket must fit very snugly
 - if patient experiences changes in volume of the amputated limb, suction is lost
E. SUSPENSION

- **Partial suction**: socket is slightly loose; patient wears a sock and an auxiliary suspension aid that encircles the pelvis
 - **Silesian bandage**: fabric
 - **hip joint and pelvic band**: rigid plastic or metal
- **makes prosthesis heavier**
E. SUSPENSION

- **No suction**: socket has a distal hole, but no valve (pressure is same inside and outside the socket)
 - Patient wears one or two socks and requires a pelvic band
 - Easier to don but hinders control
SOCKS AND SHEATHS

• All prosthetic wearers (except total suction or those using a sheath) wear socks
• Socks come in various thicknesses (ply) and materials
SOCKS AND SHEATHS

- **Cotton**: 2-, 3-, and 5- ply
 - absorbs perspiration and least allergenic
- **Wool**: 3-, 5-, and 6- ply
 - provides good cushioning
- **Orlon/Lycra**: 2-, and 3- ply
 - provides considerable resilience, poor absorption of perspiration
SOCKS AND SHEATHS

• **Sheaths**: Nylon sheaths create a smooth surface over the skin
 – decreases the risk of chafing
 – perspiration passes through the weave to be absorbed by the outer sock
SOCKS AND SHEATHS

- Silicone, urethane, and synthetic sheaths:
 - excellent shock absorption and abrasion resistance
 - can aid in suspending the socket on the limb
 - more expensive
SOCKS & SHEATHS

• **FIT:**
 – Should fit smoothly without wrinkling or undue stretching
 – Should be long enough to terminate above the most proximal part of the socket or thigh corset

• **Limb Shrinkage**
 – As limb shrinks, add more socks
 – When the patient requires 15-ply of socks to achieve a snug fit, the socket should be altered or replaced by a prosthetist
Looking Ahead

• Orthotics
Questions??