COURSE OUTLINE

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIV228</td>
<td>REINFORCED CONCRETE DESIGN</td>
<td>3</td>
</tr>
</tbody>
</table>

Catalog description (2011-2013 Catalog):
Examines the design of basic reinforced concrete structural members, including rectangular beams, slabs, columns, footings, and retaining walls. Requires a thorough knowledge of the ACI Standard Code. Covers field inspection procedures. Lab projects involve designing, mixing, and evaluating concrete cylinders and beams, adhering to alternate design and strength design approaches. Spring offering.

Required texts/other materials:
Design of Reinforced Concrete (Latest Edition)
By J.C. McCormac and J.K. Nelson
Wiley Publishers

Last revised: Spring 2019
Course coordinator: James Maccariella, 609-570-3462
maccarij@mccc.edu

Information resources: (Describe the primary information resources that support the course, including books, videos, journals, electronic databases, websites, etc. To request new materials for your course, use the library request form at: www.mccc.edu/student_library_course_form.shtml)
Videos: Materials for Concrete – Admixtures
Finishing and Curing Quality Concrete

Other learning resources: N/A
I. **Course competencies/goals**

The student will be able to...

1. Demonstrate the composition and properties of concrete.
2. Design, proportion, mix and test concrete.
4. Demonstrate the “Working Stress” (Alternate Design Method) and “Ultimate Strength” (Strength Design Method) methods of analysis and design of reinforced concrete beams and columns.
5. Calculate the principles of analysis and design of footings and retaining walls.
6. Demonstrate the use of reinforcing steel in various reinforced concrete building members.
7. Demonstrate reinforced concrete construction and inspection techniques.

II. **Course-Specific General Education Knowledge Goals and Core Skills.**

General Education Knowledge Goals

Goal 1. Communication. Students will communicate effectively in both speech and writing.

Goal 2. Mathematics. Students will use appropriate mathematical and statistical concepts and operations to interpret data and to solve problems.

Goal 3. Science. Students will use the scientific method of inquiry, through the acquisition of scientific knowledge.

MCCC Core Skills

Goal A. Written and Oral Communication in English. Students will communicate effectively in speech and writing, and demonstrate proficiency in reading.

Goal B. Critical Thinking and Problem-solving. Students will use critical thinking and problem solving skills in analyzing information.

Goal F. Collaboration and Cooperation. Students will develop the interpersonal skills required for effective performance in group situations.

III Units of Study in Detail.

UNIT I (3½ Weeks): CONCRETE MIXTURES; REINFORCED CONCRETE BEAMS (ALTERNATE DESIGN METHOD)

(Course Competencies 1, 2, 6 & 7; Gen Ed Goals 1, 2 & 3; Core Skills A, B & F).

The student will be able to...

1. List and describe the components of a concrete mixture.
2. List and describe the requirements of a quality concrete.
3. List and describe the types of Portland cement.
4. Describe, using a flowchart, the manufacture of Portland cement.
5. List the approximate percentages by volume of each component of an air-entrained or non-air-trained concrete mixture.
6. Define air-entrained concrete and state the reasons for its use.
7. Define the term "admixture" and describe reasons for its use.
8. Discuss the principal factors influencing the strength of concrete.
9. Define "slump".
10. Describe in detail the procedure for making a slump test.
11. List the advantages for curing of concrete and describe several methods used.
12. Using the absolute volume method, calculate the proportions of each component (by weight) to prepare a cubic yard of concrete, given the ratio of cement, water, fine aggregate and coarse aggregate.
13. Design a concrete mix for given conditions of weather and strength, using the P.C.A. "absolute volume" method.
14. Analyze a reinforced concrete rectangular beam for tensile stress, allowable moment and/or allowable loads using the "Alternate Design Method".
15. Define "over-reinforced", "under-reinforced" or "balanced" as it applies to the analysis of a reinforced concrete rectangular beam.

UNIT II (4 Weeks): REINFORCED CONCRETE BEAMS (ALTERNATE AND STRENGTH DESIGN METHODS)

(Course Competencies 1, 3, 4, 6 & 7; Gen Ed Goals 1, 2 & 3; Core Skills A, B & F).

The student will be able to...
1. Calculate concrete cover and bar spacing for reinforced concrete beams.
2. Design a reinforced concrete beam with tensile steel using the "Alternate Design Method".
3. Analyze a reinforced concrete rectangular beam for tensile steel stress, concrete compressive stress, allowable ultimate moment and/or allowable ultimate load using the Strength Design Method.
4. Compare and contrast the design of a rectangular beam by the Alternate Design and Strength Design Methods.
5. Describe the concept of shear as a measure of diagonal tension.
6. Calculate the allowable and actual ultimate shear stress for a beam, and determine if web reinforcement is needed, using the Strength Design Method.
8. Calculate basic developmental length (1_d) of reinforcing bars for given conditions.
9. Determine the "splice class" for given conditions of splices in tension.
10. Calculate the lapped length for various splice classes in tension.
11. Describe the criteria for "control of cracking" in reinforced concrete beams.
12. Solve the appropriate equations for controlling cracking resulting from deflection.
UNIT III: REINFORCED CONCRETE COLUMNS (STRENGTH DESIGN METHOD)

(Course Competencies 1, 3, 4, 6 & 7; Gen Ed Goals 1, 2 & 3; Core Skills A, B & F).

The student will be able to...
1. Describe and sketch five types of concrete columns.
2. Distinguish between "tied", "spirally reinforced", "combination" and "composite" columns, and "pipe columns filled with concrete".
3. Analyze and design tied reinforced concrete columns with concentric axial loads.
4. Analyze and design spirally reinforced concrete columns with concentric axial loads.
5. Sketch and describe the "interaction diagram".
6. Calculate the allowable load on a short tied column using the interaction diagram.
7. Design spirals and ties.
8. Calculate the allowable load on a short spirally reinforced column using the interaction diagram.
9. Calculate and use the appropriate strength reduction factors for "long" reinforced concrete columns

UNIT IV (3 ½ Weeks): FOOTINGS AND RETAINING WALLS

(Course Competencies 1, 3, 4, 5, 6 & 7; Gen Ed Goals 1, 2 & 3; Core Skills A, B & F).

The student will be able to...
1. List and describe the several types of footings.
2. List the methods of failure of footings.
3. Analyze plain, wall, square spread and rectangular footings for soil bearing pressure, moment, shear, concrete bearing, load transfer and reinforcement developmental length.
4. Design wall and square spread footings by the "Strength Design Method".
5. List and describe the types of retaining walls.
6. Check a "cantilever" retaining wall for overturning and sliding.
7. Describe the location of structural and temperature/shrinkage reinforcement in a cantilever retaining wall.
IV METHOD OF PRESENTATION

The lecture/discussion approach is used with transparencies and handouts presented for
more complicated problems and formula derivations. Class participation is emphasized by
asking the students questions and encouraging discussion.

Practical examples encountered in everyday construction involving both structures in
general, and specific concrete structures are introduced in the lecture. The building code
requirements as published by the American Concrete Institute (ACI 318) latest edition
must be adhered to. The textbook and handouts are used for homework assignments.

Students are given a "Manual of Formulas" which conforms to the ACI 318 latest edition
Code.

V EVALUATION OF STUDENT LEARNING

A test is given at the end of each of the first three units, which consists of four or five
problems covering the objectives of that unit. The length of each test is approximately two
hours. The final exam consists of several problems covering principles learned throughout
the semester.

Students are expected to submit a laboratory report of the design, mixing and molding of
the concrete cylinders and beams. The student is expected to analyze the data and
prepare a comprehensive written report with observations and conclusions. Library
research may be required.

Several homework assignments will be collected, graded and returned.

GRADE WEIGHTS

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tests 1, 2 and 3</td>
<td>55%</td>
</tr>
<tr>
<td>Final Exam</td>
<td>25%</td>
</tr>
<tr>
<td>Homework, Class Participation</td>
<td>5%</td>
</tr>
<tr>
<td>Lab Report and Lab Participation</td>
<td>15%</td>
</tr>
</tbody>
</table>

VI LABORATORY

Problems and principles of construction and design are discussed. Students are
encouraged to research literature, and propose projects for discussion which involve
present-day concrete construction methods and materials, and design techniques.
Several labs will be devoted to problem solving.

A concrete mix is designed using the Portland Cement Association booklet. The concrete
is proportioned, mixed and molded into 4" diameter by 8" cylinders. A reinforced concrete
beam is also prepared. Seven-day and twenty-eight day tests are made on the cylinders.
The beam is also tested to failure by applying a concentrated load at the midpoint. The
results are analyzed and compared with theoretical considerations.

Field trips may be taken to study and view manufacturing and/or construction procedures.

VII LIBRARY USAGE

The summary, findings and conclusions of the major laboratory report may require library
research. A bibliography of references is to be included in the report.
VIII **Academic Integrity Statement:**

Students are expected to comply with the college-wide requirements for academic integrity. Mercer County Community College is committed to Academic Integrity—the honest, fair, and continuing pursuit of knowledge, free from fraud or deception. This implies that students are expected to be responsible for their own work. Presenting another individual's work as one's own and receiving excessive help from another individual will qualify as a violation of Academic Integrity. The entire policy on Academic Integrity is located in the Student handbook and is found on the college website (http://www.mccc.edu/admissions_policies_integrity.shtml).

IX **Special Needs Students Statement**

Mercer County Community College is committed to ensuring the full participation of all students in all activities, programs, and services. Please refer to the Student Handbook to review accommodations available for Students with Special Needs.