AVI 217

Flight VI Course Outline
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of Effective Pages</td>
<td>3</td>
</tr>
<tr>
<td>Course Overview and Assessment Criteria</td>
<td>4-7</td>
</tr>
<tr>
<td>Flight Training Objectives/Course Completion Standards</td>
<td>7-8</td>
</tr>
<tr>
<td>Flight Block 1 (Lessons 1 - 3)</td>
<td>9-13</td>
</tr>
<tr>
<td>Flight Block 2 (Lessons 4 - 9)</td>
<td>14-19</td>
</tr>
<tr>
<td>Flight Block 3 (Lessons 10 - 11)</td>
<td>20-21</td>
</tr>
<tr>
<td>Evaluation of Student Learning</td>
<td>22-23</td>
</tr>
<tr>
<td>Revision Page</td>
<td>24</td>
</tr>
<tr>
<td>Page Number</td>
<td>Contents of Page</td>
</tr>
<tr>
<td>-------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>1</td>
<td>Original</td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
</tr>
</tbody>
</table>
COURSE OUTLINE

AVI 217
Course Number

Flight VI
Course Title

1
Credit

Hours: 1 / 1
Lecture/Laboratory

Pre-requisite:
Single-Engine Land Commercial/Instrument Pilot - Airplane

Co-requisite: none

Catalog description:

An independent study course involving self-study, ground instruction, use of simulation and flight training. Students will develop the proficiency, knowledge and skills to complete the required practical examination to add a multi-engine class instrument rating to their single-engine commercial certificate and instrument rating. This training and assessment consists of 12.5 hours in a Multi-Engine aircraft.

Required texts/other materials:

- Airman's Information Manual: Department of Transportation, Federal Aviation Administration
- Airplane Flying Handbook: Department of Transportation, Federal Aviation Administration (FAA-H-8083-3A)
- Owner's Manual for Aircraft Used or Pilots Information Handbook
- Practical Test Standards for the Commercial Airplane Multi-Engine Land: Department of Transportation, Federal Aviation Administration

Last revised: Nov 2017

Course coordinator: Joan Jones

Information resources:

There are Federal Aviation Administration databases, websites such as www.faa.gov, periodicals such as Space Technology, Aviation Weekly, AOPA Pilot, Flight Training Magazine and manuals such as William K. Kershner, The Advanced Pilot's Flight Manual which may be utilized as additional information resources.

Other learning resources:

One-on-one instruction with students from Flight Instructors. Other resources will include: faculty, staff and the Aviation Flight Department.
Course Goals:

The Course goals are outlined in detail in the FAA Commercial Pilot Practical Test Standards and FAA Instrument Airman Certification Standards. The tasks are carefully enumerated within each area of operation. Please refer to this document as it specifically relates to these 11 areas of operation...

Commercial Practical Test Standards:

1. Pre-flight Preparation – Items F, G, H
2. Pre-flight Procedures – All
3. Airport Operations - NONE
4. Takeoffs, Landings and Go-Arounds – Items A, B, C, D
5. Performance Maneuvers – All
7. Slow Flight and Stalls – All
8. Emergency Operations – All
9. High Altitude Operations – Items A, B
10. Multi-Engine Procedures – Item All
11. Post-Flight Procedures - NONE

Instrument Airman Certification Standards:

1. Pre-Flight Preparation - NONE
2. Pre-Flight Procedures - Items A, C
3. ATC Clearances - NONE
4. Instrument Flight - Items A, B
5. Navigation Systems - NONE
6. Instrument Approach Procedures - All
7. Emergency Operations - Items B,C
8. Post-Flight Procedures - Item A

This Block and the course are complete when:

- The student can demonstrate a complete understanding of all relevant VFR and IFR knowledge, procedures and maneuvers required of a commercial and instrument pilot Multi-Engine Land add on certificate as per the Practical Test standards and Airman Certification Standards.
- The student’s performance meets or exceeds the minimum requirements outlined in the current FAA Instrument and Commercial Pilot Multi-Engine Land Practical Test Standards and Airman Certification Standards.

GENERAL EDUCATION GOALS AND OBJECTIVES

<table>
<thead>
<tr>
<th>MCCC General Education Goals & Objectives</th>
<th>Activities, projects, assignments, and exams that evaluate student learning of the course’s General Education goals and objectives</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Communication – English Language: Students will communicate effectively in both speech and writing.</td>
<td>Students will comprehend and evaluate their performance,</td>
</tr>
<tr>
<td>1. Students will comprehend and evaluate what they read, hear and see.</td>
<td>describe in writing the Stage Check requirements and outcomes. By practicing Commercial and Instrument Procedures the student will refine their kinesthetic and other senses for these maneuvers. Communication with ATC, Flight Service Station Personnel, and their Flight Instructors will formulate ideas necessary for completion of flight.</td>
</tr>
<tr>
<td>1.2. Students will state and evaluate the views and findings of others.</td>
<td></td>
</tr>
<tr>
<td>1.3. Students will write and speak clearly and effectively in standard American English.</td>
<td></td>
</tr>
<tr>
<td>1.4. Students will logically and persuasively state and support orally and in writing their points of view or findings.</td>
<td></td>
</tr>
<tr>
<td>1.5. Students will evaluate, revise and edit their communication.</td>
<td></td>
</tr>
<tr>
<td>1.6. Students will develop an understanding of sensory communication and other forms of non-verbal communication.</td>
<td></td>
</tr>
<tr>
<td>2. Communication -- Foreign Language: Students will have the opportunity to develop competence in a Foreign Language.</td>
<td></td>
</tr>
<tr>
<td>2.1 Students will learn basic vocabulary, grammar and everyday conversation in a foreign language.</td>
<td></td>
</tr>
<tr>
<td>2.2 Students will recognize the uniqueness of foreign countries, their people and their cultures.</td>
<td></td>
</tr>
<tr>
<td>2.3 Students will gain a measure of facility at interaction in a foreign language on topics involving that language's history, its cultural and historical context, and current issues of interest to native speakers of the language.</td>
<td></td>
</tr>
<tr>
<td>3. Critical thinking, problem solving and information literacy: Students will use critical thinking and problem solving skills in analyzing information gathered through different media and from a variety of sources.</td>
<td>Students will be able to assess and analyze their abilities to complete a flight based upon weather, aircraft, mechanical condition, fuel requirements and their health condition. Weather analysis will be facilitated by the use of on-line weather, in addition to weather briefings from other sources, for a go/no-go decision.</td>
</tr>
<tr>
<td>3.1. Students will identify a problem and analyze it in terms of its significant parts and the information needed to solve it.</td>
<td></td>
</tr>
<tr>
<td>3.2. Students will use appropriate library tools such as cataloging systems to access information in reference publications, periodicals, bibliographies and databases.</td>
<td></td>
</tr>
<tr>
<td>3.3. Students will use computers to access, analyze or present information, solve problems, and communicate with others.</td>
<td></td>
</tr>
<tr>
<td>3.4. Students will formulate and evaluate possible solutions to problems, and select and defend the chosen solutions.</td>
<td></td>
</tr>
<tr>
<td>3.5. Students will recognize weaknesses in arguments, such as the use of false or disputable premises, suppression of contrary evidence, faulty reasoning, and emotional loading.</td>
<td></td>
</tr>
<tr>
<td>4. Ethical dimension: Students will recognize, analyze and assess ethical issues and situations.</td>
<td>Based upon the code of Federal Regulations for Aviation, the student will be able to evaluate and formulate protocols that determine whether a flight can be started and completed. They will analyze situations and evaluate different courses of action in order to arrive at ethical, logical and safe decisions.</td>
</tr>
<tr>
<td>4.1. Students will identify ethical implications of an issue or a situation.</td>
<td></td>
</tr>
<tr>
<td>4.2. Students will analyze and evaluate the strengths and weaknesses of different perspectives on an ethical issue or a situation.</td>
<td></td>
</tr>
<tr>
<td>4.3. Students will integrate their knowledge, take a position on an ethical issue or a situation, and defend it with logical arguments.</td>
<td></td>
</tr>
</tbody>
</table>
5. Quantitative skills: Students will apply appropriate mathematical and statistical concepts and operations to interpret data and to solve problems.

- 5.1. Students will translate quantifiable problems into mathematical terms and solve these problems using mathematical or statistical operations.
- 5.2. Students will construct graphs and charts, interpret them, and draw appropriate conclusions.

6. Science and technology: Students will apply the scientific method of inquiry to draw conclusions based on verifiable evidence, use scientific theories and knowledge to understand the natural world, and explain the impact of scientific theories, discoveries and technological changes on society.

- 6.1. Students will identify and recall scientific information and theories, and, integrating and applying this knowledge, will use the scientific method to solve problems and draw conclusions from data.
- 6.2. Students will distinguish between scientific theory and scientific discovery, will distinguish between science and its technological application, and will explain the impact of science and technology on society.
- 6.3. Students will demonstrate a working knowledge of the subject matter of one of the physical or biological sciences.
- 6.4. Students will demonstrate a working knowledge of a major domain of technological application.

Students will be able to interpret and analyze performance characteristics to determine whether or not it would be safe to fly.

Students will be able to determine various airspeeds, weight and balance solutions, density altitude calculations, and apply them to the safe preparation and execution of the flight.

Flight training course objectives:

This flight training course will provide the student with the aeronautical skills and experience necessary to meet the requirements for a commercial instrument pilot certificate with an airplane category rating and Multi-Engine Class Rating.

Hours allocation:

<table>
<thead>
<tr>
<th>Ground Instruction</th>
<th>Simulator Instruction</th>
<th>Flight Instruction</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.0</td>
<td>5.0</td>
<td>12.5</td>
<td>17.5</td>
</tr>
</tbody>
</table>

Course completion standards:

The course completion standards are based upon the Commercial Practical Test Standards and Instrument Airman Certification Standards, as outlined by the Federal Aviation Administration. To meet the flight training course completion standards, the student must demonstrate, through flight tests and school records, that they meet the requirements for a commercial instrument pilot certificate with airplane category and multi-engine land class rating. Periodic progress checks may include material covered in any previous lesson.
Lesson Progress Checks:

11 Multi-Engine Aircraft: The student will perform all tasks required for the Multi-Engine class, Instrument Rating as specified by the Practical Test Standards and Airman Certification Standards.
FLIGHT BLOCK 1

BRIEFING LESSON

This lesson will be used to introduce the student to the systems and performance of the complex aircraft to be used. Prior to this lesson, the student should be familiar with the owner's manual of the complex aircraft to be used.

Prerequisites:
1. Owner's Manual
2. Weight and Balance Forms

Content:
1. Systems:
 a. Fuel Systems
 b. Electrical Systems
 c. Lighting Equipment
 d. Landing Gear System
 e. Heating and Ventilation System
 f. CHT, EGT and Cowl Flap Systems
 g. Constant Speed Propeller System
 h. Avionics System

2. Operational Checklist:
 a. Use of the checklist

3. Aircraft Limitations:
 a. Weight and Balance
 b. Structural Limitations
 c. Required Equipment

4. Aircraft Performance:
 a. Airspeed Correction Table
 b. Stall Speed Chart
 c. Takeoff and Climb Charts
 d. Cruise Performance Chart
 e. Landing Distance and Glide Charts

5. Emergency Operations:
 a. Electrical Emergencies
 b. Engine Emergencies
 c. Landing Gear Emergencies
 d. Forced Landings
 e. Aircraft Fires
 f. Emergency Equipment and Survival Gear

Completion Standards:
The student will show a demonstrated understanding of the aircraft systems and performance by correctly answering related questions from the flight instructor. This lesson will be documented in the comments section on the back of the student's commercial/instrument training folder.
FLIGHT LESSON 1 - MULTI-ENGINE TRAINING INSTRUCTION

Multi-Engine aircraft

1.5 Flight

Learning Objectives:

The student will be introduced to Multi-Engine Aircraft. Multi-Engine terms will be reviewed as well as aerodynamics associated with Multi-Engine operations. Basic procedures will be introduced for cabin familiarization, including, but not limited to, checklists, takeoff, in-flight and landing procedures.

Content:

1. Pre-flight Orientation:

There will be a review of airspeeds to be used for normal rotation, lift-off, transition, climb, cruise climb, cruise, decent, approach and landing. The Pilot Operating Handbook will be the source of this information. Power setting procedures for cruise and synchronization for propellers will be discussed and demonstrated. Approach speeds and flap settings will be included, and Multi-engine aerodynamics will be discussed.

2. Introduction to Multi-Engine Aircraft, engine start checklist, before takeoff checklist, takeoff, in-flight maneuvers, and landing procedures:
 a. Instrument trainer familiarization:
 1. Location of controls:
 a. Throttle
 b. Propeller
 c. Mixture control
 d. Trim
 e. Flight instruments
 f. Radios
 b. Engine start checklist
 c. Before takeoff checklist
 d. Takeoff:
 1. Rotation
 2. Liftoff (VMC +5)
 3. Transition
 4. Climb
 5. Cruise climb
 6. Leveling off
 7. Propeller synchronization
 e. In-flight Maneuvers:
 1. Straight and level
 2. Turns level
 3. Descents straight ahead
 4. Climbs straight ahead
 5. Descending turns
 6. Climbing turns
 7. Steep turns
 f. Landing procedures:
 1. Fuel fullest tank
2. Fuel pumps
3. Approach speed
4. Landing gear down and locked
5. Flap setting
6. Approach above VMC
7. GUMPF check

3. Post-flight Discussion

Completion Standards:

The student will understand the airspeeds and aerodynamics for safe aircraft operations. The student will be able to find all relevant information in the Pilots Operating Handbook. Procedures for utilizing the checklists for starting, before takeoff, takeoff, climb and leveling off will be followed. In-flight maneuvers and landing procedures will be practiced. Rollout from turns should be within 10° of the pre-selected heading. Altitude should be held within 100 feet and airspeed within 10 knots of assigned airspeed.
FLIGHT LESSON 2 – MULTI-ENGINE TRAINING INSTRUCTION

Multi-Engine Aircraft

INSTRUCTION

1.0 Flight

0.2 Ground

Learning Objectives:

The student will acquire additional proficiency in Multi-Engine operations. Knowledge of correct Airspeeds to fly will be reinforced, and basic procedures will be practiced. The student will refine their skills in checklist use, engine start-up, takeoff, climb, leveling off, in-flight maneuvers, approach and landing. The student will be introduced to go-around procedures and instrument approach procedures in a Multi-Engine aircraft.

Content:

1. Pre-flight Orientation

2. Review
 a. Location of controls
 b. Engine start utilizing checklist
 c. Before takeoff checklist
 d. Takeoff
 e. Transition
 f. Climb
 g. Cruise climb
 h. Leveling off
 i. Prop synchronization
 j. In-flight maneuvers
 1. Turns level
 2. Descents straight ahead
 3. Descending turns
 4. Climbing turns
 5. Steep turns
 k. Landing procedures

3. Introduction to Go Around and Short Field Approach
 a. Go-around procedures
 b. Short field approach
 c. Instrument Approach Procedures in Multi-Engine Aircraft
 d. Slow Flight
 e. Stalls

Completion Standards:

The student will display increased proficiency in Multi-Engine operations. Where appropriate, the student will maintain altitude, heading and airspeed within 100 feet, 10° and 10 knots, climb or descent rates within 500 feet per minute. Go-around procedures and short field approaches will be practiced.
Objective: During this progress check the student will perform takeoff, in-flight maneuvers, landing procedures, go around, short field approach, slow, and flight stalls. This progress check will be conducted by the Chief Instructor, or their assistant, to evaluate the student’s performance of all the maneuvers learned in the previous lessons.

Content:
1. Pre-flight orientation: Explanation of Expectation of Student Performance and Skill
2. Review:
 a. Controls
 b. Engine start checklist
 c. Before takeoff checklist
 d. Takeoff:
 1. Rotation
 2. Liftoff
 3. Transition
 4. Climb
 5. Cruise climb
 6. Leveling off
 7. Propeller synchronization
 e. In-flight maneuvers:
 1. Climbs, turns, descents and straight and level flight
 2. Steep turns
 3. Slow flight
 4. Stalls:
 a. Approach to landing (power-off)
 b. Takeoff (power-on)
 5. Normal/Crosswind Landings
 6. Go around procedures
 7. Instrument approaches Procedures
3. Post-flight Discussion

Completion Standards:
The student will have demonstrated their ability to perform set maneuvers safely and within prescribed limits. Specific skills including airspeed control, turning onto pre-selected headings and altitude control must be shown. Appropriate standard operating procedures must be shown and/or recited during this check.
Flight Block 2

FLIGHT LESSON 4 – MULTI-ENGINE TRAINING INSTRUCTION
Multi-Engine Aircraft

1.5 Flight
0.5 Ground

Objective: The student will be instructed on the correct preflight check of the aircraft. Items for inspection and checking will be pointed out. Basic procedures will be introduced after cockpit familiarization including the use of checklists for engine start, before takeoff, taxiing, takeoff, as well as learning in-flight maneuvers and landing procedures.

Content:
1. Pre-flight Orientation
2. Taxi
3. Normal/Crosswind Takeoffs
4. Shortfield Takeoffs
5. Steep Turns
6. Slow Flight
7. Power on and Power Off Stalls with Recovery
8. Go Around Procedures
9. Normal/Crosswind and Short field Landings

Completion standards:

The student will understand and follow the preflight inspection. Procedures for starting taxiing, before takeoff, takeoff, climb and leveling off will be followed. In-flight maneuvers and landing procedures will be practiced. Roll out from turns should be within 10° of the pre-selected heading. Altitude should be held within 100 feet and airspeed within 10 knots of assigned airspeed.
Objectives: The student will continue to work on refining their skills in a multi-engine airplane. In addition, Instrument approaches in a multi-engine aircraft will be introduced.

Content:
1. Pre-flight Orientation
2. Taxi
3. Normal/Crosswind Takeoffs
4. Shortfield Takeoffs
5. Go Around Procedures
6. Normal/Crosswind and Short Field Landings
7. Introduce Instrument Approach Procedures (Precision and Non-Precision Approaches)

Completion Standards:

The student will display increased proficiency in Multi-Engine operations. Where appropriate, the student will maintain altitude, heading and airspeed within 100 feet, 10° and 10 knots, and climb and descent rates within 500 feet per minute. Go around and short field approaches will be practiced. In addition Multi-Engine instrument approach procedures will be introduced.
Objective: The student will acquire additional proficiency in Multi-Engine operations. Multi-Engine Emergency Procedures will be discussed and practiced. Identification of critical engine, VMC, Accelerate Stop distances, Single-Engine operating procedures will be discussed and practiced.

Content:
1. Multi-Engine Emergency Procedures
2. Engine Failures:
 a. Takeoff Roll
 b. Climb Out
 c. Cruise
 d. Approach to landing
3. Emergency Descents

Completion Standards:
The student will display increased proficiency in Multi-Engine emergency operations. Students will complete emergency checklists as required in an efficient and timely manner. Where appropriate, the student will maintain altitude, heading and airspeed within 100 feet, 10° and 10 knots, and climb or descent rates within 500 feet per minute.
FLIGHT LESSON 7 – MULTI-ENGINE TRAINING INSTRUCTION

Multi-Engine Aircraft

Objective: The student will be introduced to emergency Multi-Engine operations. The student will be introduced to emergency descent procedures, engine failure during the takeoff roll, after rotation, and during flight. VMC Procedures will be discussed.

Content:
1. Pre-flight Orientation
2. Introduce:
 a. Emergency descent
 b. Engine failure prior to rotation
 c. Engine failure after rotation with gear down
 d. Engine failure after rotation with gear up
 e. VMC Demonstration
3. Post-flight Discussion

Completion Standards:
The student, having experienced these engine-out operations, will understand the seriousness of these emergencies. Recovery procedures will be performed with caution and accurately and expeditiously completed.
Objective: The student will acquire additional proficiency multi-engine maneuvers both non-emergency and emergency situations. This lesson will include a review of an emergency descent, engine failure prior to rotation, after rotation and VMC. This lesson will introduce approach and landing with an inoperative engine, as well as systems and equipment malfunctions.

Content:
1. Pre-flight Orientation

2. Review:
 a. Emergency descent
 b. Engine failure prior to rotation
 c. Engine failure after rotation
 d. Engine failure after rotation with gear up and decision made to continue
 e. VMC demonstration

3. Introduce
 a. Approach and landing with an inoperative engine
 b. Instrument Approach Procedures with inoperative Engine

Completion Standards:
The student will demonstrate proficiency multi-engine operations both emergency and non-emergency. The VMC demonstration will be performed proficiently. The approach to landing with an inoperative engine and system and equipment failures will be performed by the student, utilizing appropriate corrective procedures and techniques.
Objective: The student will acquire additional proficiency in diagnosing and reacting to emergencies. This lesson will include a review of an emergency descent, engine failure prior to rotation, after rotation, VMC, approach and landing with an inoperative engine, and instrument approaches with an inoperative engine. In addition, the student will be introduced to the feathering procedure for an inoperative engine.

Content:
1. Pre-flight Orientation
2. Review:
 a. Emergency descent
 b. Engine failure prior to rotation
 c. Engine failure after rotation
 d. Engine failure after rotation with gear up and decision made to continue
 e. VMC demonstration
 f. Instrument Approach Procedures with inoperative engine
3. Introduce Feathering Operations

Completion Standards:

The student will exhibit proficiency in handling various engine failure scenarios. The VMC exercise will be performed proficiently. The student will show proficiency in approach to landing with an inoperative engine, diagnosing and reacting to system and equipment failures, and flying instrument procedures with an inoperative engine. The student will also be introduced to the feathering procedure for an inoperative engine.
Flight Block 3

FLIGHT LESSON 10 – MULTI-ENGINE TRAINING INSTRUCTION

Multi-Engine Aircraft

INSTRUCTION
1.5 Instruction
0.5 Ground
0.5 Instrument

Objective: The student will review all maneuvers required for commercial instrument multi-engine land certificate including normal/crosswind takeoffs and landings, stalls, MCA, steep turns, multi-engine emergency procedures, inoperative engine procedures for takeoff, enroute, and landing, and instrument approach procedures both with engines operating normally and with an inoperative engine.

Content: 1. Pre-flight Orientation

2. Review:
 a. Normal/Crosswind/Short field Takeoffs
 b. MCA
 c. Stalls
 d. Steep turns
 e. Emergency descent
 f. Engine failure prior to rotation, after rotation
 g. VMC demonstration
 h. System and equipment malfunctions
 i. Approach and landing VFR with an engine inoperative
 j. Instrument Approach procedures
 k. Instrument approach procedures with an inoperative engine

3. Post-flight Discussion
 a. Critique flight

Completion Standards:
The student will demonstrate all maneuvers in accordance with the FAA Practical Test standards and Airman Certification Standards for an add on rating to a current Commercial/Instrument certificate.
Objective: During this Progress Check the Chief Flight Instructor, Assistant Chief Flight Instructor, or Check Instructor will conduct the Multi-Engine instrument flight check. The student must orally and practically display their competency in performing the Multi-Engine operations as described in the current Commercial Practical Test Standards and Instrument Airman Certification Standards.

Content: 1. Review
 a. Multi-engine operations as listed in Practice Test Standards and Airman Certification Standards:
 1. Oral:
 a. Performance and limitations
 b. Operation of system
 c. Principles of flight—engine inoperative
 2. Pre-flight procedures
 3. Takeoff, landings and go arounds
 4. Steep Turns
 5. MCA
 6. Power off and Power On Stalls
 7. Emergency operations VFR and IFR as applicable
 a. Emergency Descent
 b. Engine Failure during Takeoff before Vmc (Simulated)
 c. Engine Failure after lift off
 d. Approach to Landing with one engine inoperative
 8. Precision and Non Precision Approaches
 9. Multi-Engine Operations
 2. Post Flight Procedures

Completion Standards:
The student will perform the elements of the Multi-Engine Practical Test Standards to a level that meets or exceeds the requirements as described in the Practical Test Standards.
EVALUATION OF STUDENT LEARNING

The grade awarded in AVI 217 will be determined by an Oral and Practical Examination as outlined in both the Commercial and Instrument Practical Test Standards and Airman Certification Standards.

Specific Grading:

A = Meets 3 areas and exceeds 8 areas of operation - Commercial
 Meets 2 areas and exceeds 6 areas of operation - Instrument
B = Meets 5 areas and exceeds 6 areas of operation - Commercial
 Meets 4 areas and exceeds 4 areas of operation - Instrument
D = Meets 7 areas and exceeds 4 areas of operation - Commercial
 Meets 6 areas and exceeds 2 areas of operation - Instrument
D = Meets 11 areas of operation - Commercial
 Meets 8 areas of operation - Instrument
F = Does not meet Practical Test Standard requirements in any one of the Instrument and Commercial Standards

ACADEMIC INTEGRITY STATEMENT OMB 210

Mercer County Community College is committed to Academic Integrity - the honest, fair and continuing pursuit of knowledge, free from fraud or deception. This implies that students are expected to be responsible for their own work and that faculty and academic support services staff members will take reasonable precautions to prevent the opportunity for academic dishonesty. The college recognizes the following general categories of violations of Academic Integrity, with representative examples of each. Academic Integrity is violated whenever a student:

A. Uses or obtains unauthorized assistance in any academic work:
 - copying from another student’s exam
 - using notes, books, electronic devices or other aids of any kind during an exam when prohibited
 - stealing an exam or possessing a stolen copy of an exam

B. Gives fraudulent assistance to another student:
 - completing a graded academic activity or taking an exam for someone else
 - giving answers to or sharing answers with another student before, during or after an exam or other graded academic activity
 - sharing answers during an exam by using a system of signals

C. Knowingly represents the work of others as his/her own, or represents previously completed academic work as current.
 - submitting a paper or other academic work for credit which includes words, ideas, data or creative work of others without acknowledging the source
 - using another author’s words without enclosing them in quotation marks, without paraphrasing them or without citing the source appropriately
 - presenting another individual's work as one’s own
 - submitting the same paper or academic assignment to another class without the permission of the instructor
D. Fabricates data in support of an academic assignment.

- falsifying bibliographic entries
- submitting any academic assignment which contains falsified or fabricated data or results

E. Inappropriately or unethically uses technological means to gain academic advantage.

- inappropriately or unethically acquiring material via the Internet or by any other means
- using any electronic or hidden devices for communication during an exam

Each instructor and academic support service area is authorized to establish specific guidelines consistent with this policy.

CONSEQUENCES FOR VIOLATIONS OF ACADEMIC INTEGRITY

For a single violation, the faculty member will determine the course of action to be followed. This may include assigning a lower grade on the assignment, assigning a lower final course grade, failing the student in the course, or other penalty appropriate to the violation. In all cases, the instructor shall notify the Chair of the Academic Integrity Committee of the violation and the penalty imposed. When two (or more) violations of academic integrity are reported on a student, the Academic Integrity Committee (AIC) may impose disciplinary penalties beyond those imposed by the course instructors. The student shall have the right to a hearing before the AIC or a designated AIC subcommittee.

APPEALS

The student has a right to appeal the decision of the instructor or the Academic Integrity Committee. Judicial procedures governing violations of Academic Integrity are contained in the Student Handbook.

Approved by the MCCC Board of Trustees March 18, 2004

CLASSROOM CONDUCT STATEMENT

It is the student's responsibility to attend all of their classes. If they miss a class meeting for any reason, students are responsible for all content that is covered, for announcements made in their absence, and for acquiring any materials that have been distributed in class. If students walk into a class after it has begun, it is expected that they choose a seat close to where they entered the room so that they do not disrupt the class meeting.

Students are expected to follow ordinary rules of courtesy during class sessions. Engaging in private, side conversations during class time is distracting to other students and to the instructor. Leaving class early, without having informed the instructor prior to class, is not appropriate. Unless there is an emergency, leaving class and returning while the class is in session is not acceptable behavior. Disruptive behavior of any type, including sharpening pencils during class while someone is speaking, is not appropriate.

The college welcomes all students into an environment that creates a sense of community, pride and respect; we are all here to work cooperatively and to learn together.