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Abstract

 

Research has demonstrated
that very young infants can dis-
criminate between visual events
that are physically impossible
versus possible. These findings
suggest that infants have knowl-
edge of physical laws concern-
ing solidity and continuity.
However, research with 2-year-
olds has shown that they cannot
solve simple problems involving
search for a hidden object, even
though these problems require
the same knowledge. These
apparently inconsistent find-
ings raise questions about the
interpretation of both data sets.
This discrepancy may be re-
solved by examining differ-
ences in task demands.
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A paradox has emerged in the
developmental literature. On the
one hand, a wealth of research
from more than a decade of excit-
ing studies shows that very young
infants have knowledge of physi-
cal laws concerning continuity and
solidity (Baillargeon, Graber, De-
Vos, & Black, 1990; Spelke, Brein-
linger, Macomber, & Jacobson,
1992). On the other hand, recent
work has revealed a surprising
lack of such knowledge in children
between 2 and 3 years of age (Ber-

 

thier, DeBlois, Poirier, Novak, &
Clifton, 2000; Hood, Carey, & Pra-
sada, 2000). The question is raised:
Are there true discontinuities, even
regressions, in children’s concepts
of the physical world? Or can the
discrepancies between the infant
and the toddler data sets be re-
solved by pointing to differences
in task requirements? Or perhaps
the explanation lies in differences
in methodology. For example, in
the infant studies the dependent
measure is looking, and in the tod-
dler studies it is active search. What-
ever the explanation, this paradox
must be resolved before a compre-
hensive theory of early cognitive
development can be constructed.

Beginning with the seminal arti-
cle by Baillargeon, Spelke, and
Wasserman (1985), the emerging
picture of infants has been that 3-
to 4-month-olds show a stunning
sophistication in their perception
of the physical world. The typical
paradigm in this line of research
entails the presentation of an event
(e.g., a rotating screen in Baillar-
geon et al., 1985; a rolling ball in
Spelke et al., 1992) during repeated
trials (referred to as 

 

habituation

 

 tri-
als). Test trials consist of equal
numbers of “possible” (

 

consistent

 

)
events, which accord with the nat-
ural laws of physics, and “impossi-

 

ble” (

 

inconsistent

 

) events, which
break those laws. The assumption
is that if infants look longer at in-
consis tent  than at  consis tent
events, they have detected an in-
congruence with the physical law.
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The procedure in the infancy
studies can be clarified by consid-
ering an example from Experiment
3 in Spelke et al. (1992). During ha-
bituation trials, 3-month-old in-
fants saw a ball roll from the left
and disappear behind a screen. A
bright blue wall protruded above
the screen. When the screen was
lifted, the ball could be seen resting
against the wall on the right side of
the display. Following these trials,
an obstacle was placed on the track
to the left of the wall, with the top-
most part of the obstacle, as well as
the blue wall, showing above the
screen. On test trials, the ball was
again rolled from left to right. For
the inconsistent event, when the
screen was raised the ball was rest-
ing in the old place by the wall, so
that it seemed to have violated
rules of solidity (i.e., two solid ob-
jects cannot occupy the same space
at the same time) and continuity
(objects exist continuously and
move on connected paths over
space and time). By appearing at
the far wall, the ball seemed to
have moved through the solid ob-
stacle or discontinuously jumped
over it. For the consistent event,
when the screen was raised the ball
was resting against the obstacle, a
novel position but one that con-
formed to physical laws. The in-
fants looked significantly longer at
the inconsistent event than at the
consistent event. A control group
saw the ball in the same positions
when the screen was raised, but the
ball’s movement had not violated
any physical laws. This group
looked at the ball equally in the old
and novel locations, thus indicat-
ing that they had no intrinsic pref-
erence for either display and no
preference for the original position.
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From this and other experiments,
investigators have drawn the con-
clusion that very young infants
reason about objects and events by
drawing on some form of knowledge
about solidity and continuity (Baillar-
geon, 1993; Spelke et al., 1992).

 

SURPRISING RESULTS
FROM TODDLERS

 

The discordant results from tod-
dlers come from experiments pre-
senting the same type of physical
event—a rolling ball that goes be-
hind a screen and stops—but in
this case the child’s task is to actu-
ally find the ball (Berthier et al.,
2000). The apparatus (see Fig. 1)
features a wooden screen with four
doors that hides the progress of the
ball down the track. The ball is al-
ways stopped by a barrier, which
can be positioned at any of the four
doors. The cue to the ball’s location
is the top of the barrier protruding

several centimeters above the
screen. If the child understands
physical laws of solidity and conti-
nuity, he or she should open the
door by the barrier. Test trials con-
sist of the experimenter placing the
barrier on the track and lowering
the screen to conceal the track.
Then the experimenter draws the
child’s attention to the ball and re-
leases it at the top of the track. Fi-
nally, the child is invited to open a
door to find the ball.

In Figure 2,

 

 

 

the columns labeled
“opaque” show individual perfor-
mance on this task in the study by
Berthier et al. (2000). Children un-
der 3 years old performed no better
than would be expected if they
were simply guessing at the ball’s
location. Of 16 children in each age
group, no 2-year-old and only three
2.5-year-olds performed above
chance levels; 13 of the 3-year-olds
did so, however. (Note: Data for
3-year-olds are not displayed in
Fig. 2.) The almost total lack of suc-
cess for children under 3 years of
age was quite surprising, and in a

series of studies my colleagues and
I have sought to understand why
their performance is so poor.

Offering more visual informa-
tion about the ball’s trajectory
seemed like a reasonable way to
help the toddlers (Butler, Berthier, &
Clifton, 2002). We replaced the
opaque wooden screen with a
transparent one of tinted Plexiglas,
leaving four opaque doors to hide
the bottom of the wall and the
ball’s final resting position. Other-
wise we kept the procedure and
the rest of the apparatus the same.
Now children had a view of the ball
as it passed between doors, with
the additional cue of no emergence
beyond the wall. Despite this sub-
stantial increase in visual informa-
tion about the ball’s whereabouts,
2-year-old children still had great
difficulty in searching accurately:
Only 6 out of 20 children per-
formed above chance. Of the 12
children tested at 2.5 years of age,
10 were above chance, so this age
group benefited notably from the
additional information (see data in
Fig. 2 labeled “clear”).

We also recorded eye gaze, mon-
itored from a digital video camera
trained on the child’s face. Chil-
dren at both ages were highly at-
tentive as the ball was released,
and they tracked its movement
down the ramp on 84% of trials. Two
aspects of their tracking behavior
predicted their response: the point
where they stopped tracking the
ball and whether they broke their
gaze before choosing a door. For
older children, tracking the ball to
its disappearance was the most
typical pattern, and this virtually
guaranteed they would open the
correct door. A different story
emerged for the 2-year-olds. Like
2.5-year-olds, they typically tracked
the ball to its final location, but this
did not ensure success. If they
looked away after correctly track-
ing the ball, they made errors, al-
though this was not the case for
2.5-year-olds (Butler et al., 2002).

Fig. 1. View of the apparatus used for the toddler task. The child is opening the third
door, and the ball, resting against the wall, is visible through the door. From “Where’s
the Ball? Two- and Three-Year-Olds Reason About Unseen Events,” by N.E. Berthier,
S. DeBlois, C.R. Poirier, J.A. Novak, and R.K. Clifton, 2000, Developmental Psychology,
36, p. 395. Copyright by the American Psychological Association. Reprinted with
permission of the author.
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IS THE PROBLEM KEEPING 
TRACK OF HIDDEN 

MOVEMENT?

 

A second visual manipulation
was tried (Mash, Keen, & Berthier,
in press). We hypothesized that if
the children were given a full view
of the ball’s trajectory until it came
to rest against a wall, they would
be able to search correctly. In effect,
we reversed the sequence of events
that concealed the ball: In our pre-
vious studies (Berthier et al., 2000;
Butler et al., 2002), the screen was
first positioned in front of the ramp,
hiding most of it from view, and
then the ball was released at the top
of the ramp, going out of sight
while still moving. In this new
study, the ball rolled down the

 

ramp and came to a stop by a wall,
then the screen was lowered to
conceal both the ramp and the ball.
At that point, the child’s task was
the same as in previous studies—
open a door to find the ball. Note,
however, that in this case the child
did not have to reason about solid-
ity and continuity in order to find
the ball. Keeping track of its posi-
tion behind the screen was all that
was required.

Allowing complete access to the
ball’s movements benefited the older
children somewhat, but the great
majority of 2-year-olds still had
enormous problems. Only two out
of eighteen 2-year-olds tested per-
formed above chance, whereas
seven out of eighteen 2.5-year-olds
did. As when we used the clear
screen, gaze offered clues as to

Fig. 2. Proportion of trials correct on the first reach for 2- and 2.5-year olds. Results
are shown separately for trials with an opaque screen and a transparent screen. Each
circle represents one child’s performance. The boxes enclose the second and third
quartiles of the distributions, and the horizontal lines in the boxes are the medians.
From “Two-Year-Olds’ Search Strategies and Visual Tracking in a Hidden Displace-
ment Task,” by S.C. Butler, N.E. Berthier, and R.K. Clifton, 2002, Developmental Psy-
chology, 38, p. 588. Copyright by the American Psychological Association. Reprinted
with permission of the author.

 

why children failed. If children
looked at the ball as the screen was
lowered and maintained this orien-
tation until opening a door, they
were correct about 90% of the time.
Most children, however, broke
their gaze, which resulted in errors.
Merely watching as the screen was
lowered over the ramp and ball did
not aid search; only a continuous
fixation up to the point of choosing
the door led to success.

 

WHAT ABOUT TASK 
DIFFERENCES?

 

In the infant task, 3- to 4-month-
old infants looked longer at physi-
cally impossible events than at pos-
sible events (Baillargeon et al.,
1990; Spelke et al., 1992). No pre-
diction was required on the in-
fants’ part, as they simply reacted
to a visual array of an object in the
wrong place or the right place. In
contrast, the search task used with
toddlers involved prediction and
planning within a more complex ap-
paratus. In order to make the infant
and toddler tasks more comparable,
we designed a looking-time task in
which the same door apparatus
was used, but the children never
opened a door (Mash, Clifton, & Ber-
thier, 2002). Instead, they observed
the same events as before, but a pup-
pet, Ricky the raccoon, opened the
door.

Most of the time, Ricky opened
the correct door and removed the
ball. But on test trials, Ricky opened
an incorrect door (no ball found, a
physically possible, or consistent,
event) or opened the correct door
but found no ball (a physically im-
possible, or inconsistent, event). Af-
ter the door was opened and no
ball was found, the experimenter
raised the screen to reveal the ball
resting against the wall (consistent
event) or beyond the wall (incon-
sistent event). This visual array is
highly similar to what infants saw
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on the test trials of Experiment 3 in
Spelke et al. (1992), described ear-
lier. Like the infants, the toddlers
looked longer at the inconsistent
placement of the ball than at the con-
sistent placement. This result was
independently corroborated by a
looking-time study with toddlers
that used a similar apparatus but a
different procedure in which the
experimenter opened the doors
while the child watched (Hood,
Cole-Davies, & Dias, 2003).

 

CONCLUSIONS

 

To interpret the results of these
studies, first consider what can be
ruled out as an explanation of tod-
dlers’ poor performance in this
search task. The results from the
original study using an opaque
screen (Berthier et al., 2000; and
from Hood et al., 2000, as well)
suggested that toddlers have no
knowledge of continuity or solid-
ity. In the clear-screen study (But-
ler et al., 2002), 2-year-olds again
failed to recognize the barrier’s role
in stopping the ball. Maintaining
gaze on the spot where the ball dis-
appeared was the behavior most
predictive of correct door choice—
more evidence that toddlers did
not reason about this physical
event. But unexpectedly, taking
away the reasoning requirement did
not lead to success. Observing the
disappearance of a stationary ball
should have enabled the children
to select the correct door if the
problem were either hidden move-
ment or the necessity to reason
about the barrier’s role (Mash et al.,
in press). The fact that performance
remained poor in this condition
rules out these explanations of tod-
dlers’ poor search performance. The
puppet study, which used looking
as the response rather than reach-
ing, found that 2-year-olds, like in-
fants, looked longer at the inconsis-
tent event (Mash et al., 2002). This

study rules out the disconcerting
possibility that infants are en-
dowed with knowledge about
physical events that gets lost dur-
ing development, and is regained
around 3 years of age. Finally, al-
though infants and toddlers both
fail in search tasks that require a
reaching response, previous work
not discussed here demonstrated
that 6-month-olds will reach for
objects hidden by darkness (Clif-
ton, Rochat, Litovsky, & Perris,
1991). Thus, it is not the response
of reaching, in contrast to looking,
that is the cause of infants’ and tod-
dlers’ failure, but rather a problem
of knowing where to search.

What could be the toddlers’
problem in the search task? A dis-
tinct possibility, already men-
tioned, is the requirement of pre-
diction. In order to plan and execute
a successful search, toddlers had to
know the ball’s location in ad-
vance. Moreover, they had to coor-
dinate this knowledge with appro-
priate action. Further research is
needed to determine if either or
both of these aspects are critical. One
means of exploring this possibility
is to devise new tasks that require
location prediction but have fewer
spatial elements to be integrated
than the ball-barrier-door task and
require simpler action plans.

A second prime issue needing
further investigation is the relation
between gaze behavior and search.
Choice of the correct door was as-
sociated with continuous gaze at
the hiding event; gaze breaks be-
fore searching were fatal to suc-
cess. These data imply that chil-
dren did not  use s ight  of  the
barrier’s top as a cue for the correct
door. Likewise, adults faced with
an array of 20 identical doors with
no further marker might well use
unbroken gaze at the point of dis-
appearance as a strategy. If confu-
sion among identical doors is the
children’s problem, then making
the doors distinct should help. This
manipulation coupled with careful

analysis of gaze could determine
whether the toddlers’ problem is
simply spatial confusion among
identical doors. If so, the interesting
question remains as to why the
barrier’s top does not cue location.

Finally, a theoretical issue is un-
resolved. The results for the look-
ing-time task indicate that tod-
dlers, and even infants, have some
knowledge about the ball’s ex-
pected location, but the contents of
their knowledge is unclear. Ac-
cording to Spelke (Spelke et al.,
1992), the principles of continuity
and solidity are part of a constant
core of physical knowledge that in-
fants are endowed with. Infants of
3 to 4 months in age mentally rep-
resent hidden objects and can rea-
son about an object’s motion being
constrained by continuity and so-
lidity. Spelke et al. (1992) did not
claim, however, that the infants in
their study could predict the ball’s
location, and the toddler data sug-
gest that infants’ and even 2-year-
olds’ reasoning may be limited to
recognizing after-the-fact incongru-
ent events. If so, perceptual recogni-
tion of implausible event outcomes
seems like a valuable building block
on which to construct further knowl-
edge, and eventually prediction,
about the physical world.
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Abstract

 

Successful negotiation of ev-
eryday life would seem to re-
quire people to possess insight
about deficiencies in their intel-
lectual and social skills. How-
ever, people tend to be blissfully
unaware of their incompetence.
This lack of awareness arises be-
cause poor performers are dou-
bly cursed: Their lack of skill
deprives them not only of the
ability to produce correct re-
sponses, but also of the expertise
necessary to surmise that they
are not producing them. People
base their perceptions of perfor-
mance, in part, on their precon-
ceived notions about their skills.

Because these notions often do
not correlate with objective per-
formance, they can lead people
to make judgments about their
performance that have little to
do with actual accomplishment.
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Real knowledge is to know the extent
of one’s ignorance.

—Confucius

 

Confucius’ observation rings
just as true today as it did 26 centu-
ries ago. To achieve and maintain

an adequate measure of the good
life, people must have some insight
into their limitations. To ace an
exam, a college student must know
when he needs to crack open his
notebook one more time. To provide
adequate care, a physician must
know where her expertise ends and
the need to call in a specialist begins.

Recent research we have con-
ducted, however, suggests that peo-
ple are not adept at spotting the lim-
its of their knowledge and expertise.
Indeed, in many social and intellec-
tual domains, people are unaware of
their incompetence, innocent of their
ignorance. Where they lack skill or
knowledge, they greatly overesti-
mate their expertise and talent, think-
ing they are doing just fine when, in
fact, they are doing quite poorly.

 

IGNORANCE OF 
INCOMPETENCE: 

AN EXAMPLE

 

Consider the following example.
In a sophomore-level psychology
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Abstract

 

Highly math-anxious indi-
viduals are characterized by a
strong tendency to avoid math,
which ultimately undercuts
their math competence and
forecloses important career
paths. But timed, on-line tests
reveal math-anxiety effects on
whole-number  ar i thmet ic
prob lems  (e .g . ,  46  

 

�

 

 27 ) ,
whereas achievement tests
show no competence differ-
ences. Math anxiety disrupts
cognitive processing by com-
promising ongoing activity in
working memory. Although
the causes of math anxiety are
undetermined, some teaching
styles are implicated as risk
factors. We need research on
the origins of math anxiety and
on its “signature” in brain ac-
tivity, to examine both its emo-
t iona l  and  i t s  cogni t ive
components.

 

Keywords

 

anxiety; mental arithmetic;
math competence; working
memory; problem solving

My graduate assistant recently
told me about a participant he had
tested in the lab. She exhibited in-
creasing discomfort and nervous-
ness as the testing session pro-
gressed, eventually becoming so
distraught that she burst into tears.
My assistant remarked that many
of our participants show some un-
ease or apprehension during test-
ing—trembling hands, nervous

laughter, and so forth. Many ask,
defensively, if their performance
says anything about their overall
intelligence. These occasionally ex-
treme emotional reactions are not
triggered by deliberately provoca-
tive procedures—there are no per-
sonally sensitive questions or in-
tentional manipulations of stress.
Instead, we merely ask college
adults to solve elementary-school
arithmetic problems, such as 46 

 

�

 

18 

 

�

 

 ? and 34 

 

�

 

 19 

 

�

 

 ?
The reactions are obvious symp-

toms of anxiety, in this case math
anxiety induced by ordinary arith-
metic problems presented in timed
tasks. On the one hand, it is almost
unbelievable that tests on such fun-
damental topics can be so upset-
ting; knowing that 15 

 

�

 

 8 

 

�

 

 7
ought to be as basic as knowing
how to spell “cat.” On the other
hand, U.S. culture abounds with
attitudes that foster math anxiety:
Math is thought to be inherently
difficult (as Barbie dolls used to
say, “Math class is hard”), aptitude
is considered far more important
than effort (Geary, 1994, chap. 7),
and being good at math is consid-
ered relatively unimportant, or
even optional.

In this article, I discuss what has
been learned about math anxiety
across the past 30 years or so, and
suggest some pressing issues to be
pursued in this area. An important
backdrop for this discussion is the
fact that modern society is increas-
ingly data and technology ori-
ented, but the formal educational
system seems increasingly unsuc-
cessful at educating students to an
adequate level of “numeracy,” the

mathematical equivalent of literacy
(Paulos, 1988).

 

MATH ANXIETY DEFINED 
AND MEASURED

 

Math anxiety is commonly de-
fined as a feeling of tension, appre-
hension, or fear that interferes with
math performance. The first sys-
tematic instrument for assessing
math anxiety was the Mathematics
Anxiety Rating Scale (MARS), pub-
lished by Richardson and Suinn
(1972). In this test, participants rate
themselves on the level of anxiety
they would feel in various every-
day situations, such as trying to re-
figure a restaurant bill when they
think they have been overcharged
or taking a math test. My co-work-
ers and I use a shortened version of
the test, which yields scores that
correlate well with scores obtained
using the original test and also has
very acceptable test-retest reliabil-
ity (i.e., an individual who takes
the test on different occasions gen-
erally receives similar scores). We
have also found that for a quick de-
termination, one can merely ask,
“On a scale from 1 to 10, how math
anxious are you?” Across at least a
half-dozen samples, responses to
this one question have correlated
anywhere from .49 to .85 with
scores on the shortened MARS.

There is a rather extensive litera-
ture on the personal and educa-
tional consequences of math anxi-
ety, summarized thoroughly in
Hembree (1990). Perhaps the most
pervasive—and unfortunate—ten-
dency is avoidance. Highly math-
anxious individuals avoid math.
They take fewer elective math
courses, both in high school and in
college, than people with low math
anxiety. And when they take math,
they receive lower grades. Highly
math-anxious people also espouse
negative attitudes toward math,
and hold negative self-perceptions
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about their math abilities. The cor-
relations between math anxiety
and variables such as motivation
and self-confidence in math are
strongly negative, ranging between

 

�

 

.47 and 

 

�

 

.82. It is therefore no
surprise that people with math
anxiety tend to avoid college ma-
jors and career paths that depend
heavily on math or quantitative
skills, with obvious and unfortu-
nate consequences.

Interestingly, math anxiety is
only weakly related to overall in-
telligence. Moreover, the small cor-
relation of 

 

�

 

.17 between math anx-
iety and intelligence is probably
inflated because IQ tests include
quantitative items, on which indi-
viduals with math anxiety perform
more poorly than those without
math anxiety. The small correlation
(

 

�

 

.06) between math anxiety and
verbal aptitude supports this inter-
pretation. However, math anxiety
is related to several other impor-
tant characteristics. As conventional
wisdom suggests, it is somewhat
higher among women than men.
The gender difference is rather small,
may be particularly apparent in
highly selected groups (e.g., col-
lege students), and may be partly
attributable to a greater willingness
on the part of women to disclose
personal attitudes. Nonetheless,
when we recruited participants for
research on math anxiety,  we
found fewer men than women at
high anxiety levels, but just the re-
verse at low levels (Ashcraft &
Faust, 1994).

Individuals who are high in
math anxiety also tend to score
high on other anxiety tests. The
strongest interrelationship is with
test anxiety, a .52 correlation. De-
spite the overlap among kinds of
anxiety, however, the evidence is
convincing that math anxiety is a
separate phenomenon. For in-
stance, intercorrelations between
alternative assessments of math
anxiety range from .50 to .70, but
intercorrelations of math anxiety

with other forms of anxiety range
from .30 to .50. In a particularly
clear display of the specificity of
math anxiety, Faust (1992) found
physiological evidence of increas-
ing reactivity (e.g., changes in heart
rate) when a highly math-anxious
group performed math tasks of in-
creasing difficulty. When the same
participants performed an increas-
ingly difficult verbal task, there
was hardly any increase in their re-
activity (e.g., Ashcraft, 1995, Fig. 6),
and participants with low math
anxiety showed virtually no in-
crease in either task.

 

MATH ANXIETY AND 
MATH COMPETENCE

 

An obvious but unfortunate
consequence of the avoidance ten-
dency is that compared with peo-
ple who do not have math anxiety,
highly math-anxious individuals
end up with lower math compe-
tence and achievement. They are
exposed to less math in school and
apparently learn less of what they
are exposed to; as a result, they
show lower achievement as mea-
sured by standardized tests (e.g.,
Fennema, 1989). The empirical re-
lationship is of moderate strength
(a correlation of 

 

�

 

.31 for college
students), but sufficient to pose a
dilemma for empirical work. That
is, when highly math-anxious indi-
viduals perform poorly on a test,
their poor performance could in
fact be due to low competence and
achievement rather than height-
ened math anxiety. If the relation-
ship between anxiety and compe-
tence holds for all levels of math
difficulty, then variations in com-
petence will contaminate any at-
tempt to examine math perfor-
mance at different levels of math
anxiety.

Fortunately, there are ways out
of this dilemma. One is to test addi-
tional samples of participants on

untimed, pencil-and-paper ver-
sions of the math problems studied
in the lab. For example, we (Faust,
Ashcraft, & Fleck, 1996) found no
anxiety effects on whole-number
arithmetic problems when partici-
pants were tested using a pencil-
and-paper format. But when par-
ticipants were tested on-line (i.e.,
when they were timed as they
solved the problems mentally un-
der time pressure in the lab), there
were substantial anxiety effects on
the same problems.

We have also taken a second ap-
proach (see Ashcraft ,  Kirk,  &
Hopko, 1998). In brief, we adminis-
tered a standard math achievement
test to individuals with low, me-
dium, or high math anxiety, and
replicated the overall result re-
ported by Hembree (1990; i.e.,
math achievement scores decrease
as math anxiety increases). But we
then scored the achievement test to
take advantage of the line-by-line
increases in difficulty. With this
scoring method, we found that
there were no math-anxiety effects
whatsoever on the first half of the
test, which measured performance
on whole-number arithmetic prob-
lems. Anxiety effects were appar-
ent only on the second half of the
test, which introduced mixed frac-
tions (e.g., 10 1/4 

 

�

 

 7 2/3), per-
centages ,  equations with un-
knowns, and factoring. For these
problems, there was a strong nega-
tive relationship between accuracy
and math anxiety. Thus, individu-
als with high levels of math anxiety
do not have a global deficit in math
competence, and they can perform
as well as their peers on whole-
number arithmetic problems. In-
vestigations of higher-level arith-
metic and math, though, do need
to take the competence-anxiety re-
lationship into account.

There is still reason to be some-
what suspicious of this relationship
between anxiety and competence,
however. Effective treatments for
math anxiety (see Hembree, 1990,
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Table 8) have resulted in a signifi-
cant improvement in students’
math achievement scores, bringing
them nearly to the level shown by
students with low math anxiety.
Because the treatments did not in-
volve teaching or practicing math,
the improvement could not be due
to a genuine increase in math com-
petence. We suspect instead that
these students’ original (i.e., pre-
treatment) math competence scores
were artificially low, depressed by
their math anxiety. When the anxi-
ety was relieved, a truer picture of
their competence emerged.

 

COGNITIVE CONSEQUENCES 
OF MATH ANXIETY

 

Our original studies were ap-
parently the first to investigate
whether math anxiety has a mea-
surable, on-line effect on cognitive
processing, that is, whether it actu-
ally influences mental processing
during problem solving. In our
early studies (Ashcraft & Faust,
1994; Faust et al., 1996), we found
that math anxiety has only minimal
effects on performance with single-
digit addition and multiplication
problems. One anxiety effect we
did find, however, was in a deci-
sion-making process sensitive to
“number sense” (Dehaene, 1997)—
when making true/false judg-
ments, highly math-anxious indi-
viduals made more errors as the
problems became increasingly im-
p laus ib le  ( e .g . ,  9  
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 7  
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 39 ) ,
whereas low-anxiety participants
made fewer errors on such prob-
lems.

Arithmetic problems with larger
numbers (e.g., two-column addi-
tion or multiplication problems),
however, showed two substantial
math-anxiety effects. First, partici-
pants at high levels of anxiety rou-
tinely responded rapidly to these
problems, sometimes as rapidly as
participants with low anxiety, but

only by sacrificing considerable ac-
curacy. This behavior resembles
the global avoidance tendency
characteristic of highly math-anx-
ious individuals, but at an immedi-
ate, local level: By speeding through
problems, highly anxious individu-
als minimized their time and in-
volvement in the lab task, much as
they probably did in math class. Such
avoidance came at a price, how-
ever—a sharp increase in errors.

Second, the results showed that
addition problems with carrying
were especially difficult for highly
math-anxious individuals. In par-
ticular, the time disadvantage for
carry versus no-carry problems was
three times larger for participants
with high anxiety (753 ms) than for
those with low anxiety (253 ms),
even aside from the difference in
accuracy between the two groups.
Our interpretation was that carrying,
or any procedural aspect of arith-
metic, might place a heavy demand
on working memory, the system
for conscious, effortful mental pro-
cessing. In other words, we pro-
posed that the effects of math anxi-
ety are tied to those cognitive
operations that rely on the re-
sources of working memory.

In an investigation of this possi-
bility, Kirk and I (Ashcraft & Kirk,
2001) tested one- and two-column
addition problems, half requiring a
carry.  We embedded this test
within a dual-task procedure, ask-
ing our participants to do mental
math, the primary task, while si-
multaneously remembering ran-
dom letters, a secondary task that
taxes working memory. Two or six
letters were presented before each
addition problem, and after partici-
pants gave the answer to the prob-
lem, they were asked to recall the
letters in order. We reasoned that
as the secondary task became more
difficult (i.e., when more letters
had to be held in working mem-
ory), performance on the primary
task might begin to degrade, in ei-
ther speed or accuracy. If that hap-

pened, we could infer that the pri-
mary task indeed depended on
working memory, and that the
combination of tasks began to ex-
ceed the limited capacity of work-
ing memory.

When the addition problem in-
volved carrying, errors increased
substantially more for participants
with high math anxiety than for
those with low anxiety (Ashcraft &
Kirk, 2001, Experiment 2). More-
over, as we predicted, this was es-
pecially the case when the second-
ary task became more difficult, that
is, with a six-letter memory load.

 

On carry problems (e.g., 6 
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 9,
27 
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 15), highly anxious individu-
als made 40% errors in the heavy-
load condition, compared with only
20% errors for individuals with
low anxiety in the high-load condi-
tion and 12% errors for both groups
in the light-load condition. In the
control conditions, with each task
performed separately, the compa-
rable error rates were only 16% and
8%. These results could not be at-
tributed to overall differences in
working memory. That is, we ex-
amined the participants’ working
memory spans (the amount of in-
formation they were able to re-
member for a brief amount of time)
and found no differences between
the groups when spans were as-
sessed with a verbal task. But span
scores did vary with math anxiety
when they were assessed with an
arithmetic-based task.

These results are consistent with
Eysenck and Calvo’s (1992) model
of general anxiety effects, called
processing efficiency theory. In this
theory, general anxiety is hypothe-
sized to disrupt ongoing working
memory processes because anxious
individuals devote attention to
their intrusive thoughts and wor-
ries, rather than the task at hand. In
the case of math anxiety, such
thoughts probably involve preoc-
cupation with one’s dislike or fear
of math, one’s low self-confidence,
and the like. Math anxiety lowers
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math performance because paying
attention to these intrusive thoughts
acts like a secondary task, distract-
ing attention from the math task. It
follows that cognitive perfor-
mance is disrupted to the degree
that the math task depends on
working memory.

In our view, routine arithmetic
processes like retrieval of simple
facts require little in the way of
working memory processing, and
therefore show only minimal ef-
fects of math anxiety. But problems
involving carrying, borrowing, and
keeping track in a sequence of op-
erations (e.g., long division) do rely
on  work ing  memory ,  and  so
should show considerable math-
anxiety effects. Higher-level math
(e.g., algebra) probably relies even
more heavily on working memory,
so may show a far greater impact
of math anxiety; note how difficult
it will be, when investigating high-
level math topics, to distinguish
clearly between the effects of high
math anxiety and low math com-
petence.

 

GAPS IN THE EVIDENCE

 

Math anxiety is a bona fide anxi-
ety reaction, a phobia (Faust, 1992),
with both immediate cognitive and
long-term educational implica-
tions. Unfortunately, there has
been no thorough empirical work
on the origins or causes of math
anxiety, although there are some
strong hints. For instance, Turner
et al. (2002) documented the pat-
terns of student avoidance (e.g.,
not being involved or seeking help)
that result from teachers who con-
vey a high demand for correctness
but provide little cognitive or moti-
vational support during lessons
(e.g., the teacher “typically did not
respond to mistakes and misunder-
standings with explanations,” p.
101; “he often showed annoyance
when students gave wrong an-

swers . . . . He held them responsi-
ble for their lack of understanding,”
p. 102). Turner et al. speculated
that students with such teachers
may feel “vulnerable to public dis-
plays of incompetence” (p. 101), a
hypothesis consistent with our par-
ticipants’ anecdotal reports that
public embarrassment in math
class contributed to their math anx-
iety. Thus, it is entirely plausible,
but as yet undocumented, that
such classroom methods are risk
factors for math anxiety.

Other gaps in the evidence in-
volve the cognitive consequences
of math anxiety, including those that
interfere with an accurate assess-
ment of math achievement and com-
petence. My co-workers and I have
shown that the transient, on-line
math-anxiety reaction compromises
the activities of working memory,
and hence should disrupt perfor-
mance on any math task that relies
on working memory. The mecha-
nisms for this interference are not
yet clear, however. It may be that
intrusive thoughts and worry per
se are not the problem, but instead
that math-anxious individuals fail
to inhibit their attention to those
distractions (Hopko, Ashcraft,
Gute, Ruggiero, & Lewis, 1998).

Finally, as research on mathe-
matical cognition turns increas-
ingly toward the methods of cogni-
t ive  neurosc ience ,  i t  wi l l  be
interesting to see what “signature”
math anxiety has in brain activity.
The neural activity that character-
izes math anxiety should bear
strong similarities to the activity
associated with other negative af-
fective or phobic states. And our
work suggests that the effects of
math anxiety should also be evi-
dent in neural pathways and re-
gions known to reflect working
memory activity.
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