

Course Number EET 263

# Course Title Digital Technology Introduction to Microprocessors and Assembly Language

Credits 4

Hours: Lecture/Lab/Other 3 Lecture/3 Lab Pre-requisite

Implementation Semester & Year

**EET 251** 

Spring 2022

# **Catalog description:**

Introduces the operation of a simple computer at the physical (electrical) level using gates, registers, and other basic circuits introduced in the prerequisite course. Students gain experience building and programming a simple computer. Covers memory, basic microprocessor architecture, assembly language programming, and analog-to-digital as well as digital-to-analog converters.

**General Education Category:** 

Course coordinator:

Not GenEd

Harry Bittner, 609-570-3751, bittnerh@mccc.edu

#### Required texts & Other materials:

HCS12 Microcontroller and Embedded Systems, by Muhammad Ali Mazidi and Danny Causey, Prentice Hall, ISBN 978-0136072294

# **Course Student Learning Outcomes (SLO):**

# Upon successful completion of this course the student will be able to:

- 1. Describe the basic operation (on a block diagram level) of a simple computer that adds and subtracts 8-bit binary numbers. [ILG # 1, 3, 4, 11; PLO # 1, 6]
- 2. Describe the operation of digital to analog converters (DACs) and analog to digital converters (ADCs) for interfacing with a microprocessor. [ILG # 1, 3, 4, 10, 11; PLO # 1, 6]
- 3. Describe how to properly connect memory IC's or modules to a computer system. [ILG # 1, 3, 4, 10, 11: PLO # 1, 6]
- 4. Converse with understanding about ADC's, DAC's, memory systems and basic microprocessors. [ILG # 1, 3, 4, 10, 11; PLO # 1, 6]
- 5. Program a microprocessor or a microcontroller. [ILG # 2, 3, 10, 11; PLO # 6, 8]
- 6. Build and program simple digital systems, both individually and in teams. [ILG # 1, 3, 4, 10, 11; PLO # 3, 8]

# Course-specific Institutional Learning Goals (ILG):

**Institutional Learning Goal 1. Written and Oral Communication in English.** Students will communicate effectively in both speech and writing.

**Institutional Learning Goal 2. Mathematics.** Students will use appropriate mathematical and statistical concepts and operations to interpret data and to solve problems.

**Institutional Learning Goal 3. Science.** Students will use the scientific method of inquiry, through the acquisition of scientific knowledge.

**Institutional Learning Goal 4. Technology.** Students will use computer systems or other appropriate forms of technology to achieve educational and personal goals.

**Institutional Learning Goal 10. Information Literacy:** Students will recognize when information is needed and have the knowledge and skills to locate, evaluate, and effectively use information for college level work. **Institutional Learning Goal 11. Critical Thinking:** Students will use critical thinking skills understand, analyze, or apply information or solve problems.

# Program Learning Outcomes for Electronics Engineering Technology (PLO)

- 1. Communicate effectively in English, both orally and in written form.
- 3. Work as a team with fellow workers.
- 6. Demonstrate an understanding of fundamental digital circuits.
- 8. Set up and operate modern electronic equipment such as DMM, oscilloscope, and signal generators.

# <u>Units of study in detail – Unit Student Learning Outcomes:</u>

### <u>Unit I</u> Memory [Supports Course SLO # 1, 3, 4, 6]

#### Learning Objectives

#### The student will be able to:

- 1. Identify the three main buses that connect memory to a CPU.
- 2. Create a memory circuit having expanded capacity (address and/or word size) using lower capacity memory IC's.
- 3. Properly wire a memory IC into a circuit given a schematic diagram and/or datasheet.
- 4. Communicate information about memory circuits including being able to read and understand parameters on datasheets for memory devices.
- 5. Explain the control signals and machine timing needed for a computer to perform specific operations.
- 6. Communicate device functionality and limitations using a datasheet.

# <u>Unit II</u> Freescale HCS12 Microcontroller and Digital to Analog Converters Units [Supports Course SLOs # 2, 4, 5, 6]

# **Learning Objectives**

#### The student will be able to:

- 1. Describe how a microcontroller adds and subtracts binary numbers.
- 2. Utilize the HCS12 instruction set to create assembly language programs.
- 3. Write programs for a microcontroller using assembly language code.
- 4. Work with fellow students to complete a joint programming project.
- 5. Describe the input and output signals involved in operating a DAC or ADC.
- 6. Describe how basic DAC and ADC systems operate.

# <u>Unit III</u> Intel 8088 Microprocessors and Analog to Digital Converters [Supports Course SLOs # 2, 4, 5]

# **Learning Objectives**

# The student will be able to:

- 1. Calculate the expected output of a DAC or ADC given the input to the system.
- 2. Communicate information about converters including being able to read and understand parameters on datasheets for these devices.
- 3. Describe the operation of the sections of the Intel 8088 computer.
- 4. Learn the Intel 8088 instruction set for an assembly language programming.
- 5. Write an assembly language program for the Intel 8088 computer
- 6. Understand the use of flags and jump commands and subroutines as a part of a computer program.

# **Evaluation of student learning**: [Evaluates SLOs # 1 - 6]

Students' achievement of the course objectives will be evaluated through the use of the following:

- Three unit tests assessing students' comprehension of terminology, calculations and practices related to the unit objectives.
- Lab grade based on individual reports of experimental results.
- Homework.

| Evaluation Tools          | Percentage Of Grade |
|---------------------------|---------------------|
| 3 Unit Tests              | 60%                 |
| Lab Experiments & Reports | 20%                 |
| Homework                  | 20%                 |
| Total                     | 100%                |