

Course Number COS 231

Course Title Fundamentals of Computer Architecture

Credits 4

Hours: Lecture/Lab/Other Co- or Pre-requisite

Implementation Semester & Year

Pre-requisite: COS 102 3 lecture / 2 lab

Spring 2022

Catalog description:

Explores the levels of organization in digital computers: logic circuit design, integrated circuits and assembly language coding.

General Education Category:

Course coordinator:

Not GenEd

Meimei Gao, 609-570-3483, gaom@mccc.edu

Required texts & Other materials:

Murdocca & Heuring, Principles of Computer Architecture, ISBN-10: 0201436647, ISBN-13: 978-0201436648 (optional)

Complementary materials will be provided by the instructor in class

A microcontroller kit: the detailed info will be provided by the instructor in class

Course Student Learning Outcomes (SLO):

Upon successful completion of this course the student will be able to:

- 1. Describe the structure and organization of computers [Supports ILG # 4, 11; PLO #1]
- 2. Describe data representations and manipulation in Computer Systems [Supports ILG # 2, 4, 11; PLO #1, 2, 3]
- 3. Implement machine structures in terms of digital circuits and logic gates [Supports ILG #2, 4, 11; PLO #1, 2, 3]
- 4. Describe instruction set structures and instruction processing [Supports ILG # 4, 11; PLO #1, 2]
- 5. Write assembly language programs [Supports ILG # 4, 11; PLO #1, 2]

Course-specific Institutional Learning Goals (ILG):

Institutional Learning Goal 2. Mathematics. Students will use appropriate mathematical and statistical concepts and operations to interpret data and to solve problems. **Institutional Learning Goal 4. Technology.** Students will use computer systems or other

appropriate forms of technology to achieve educational and personal goals.

Institutional Learning Goal 11. Critical Thinking: Students will use critical thinking skills understand, analyze, or apply information or solve problems.

Program Learning Outcomes for Computer Science AS (PLO)

- 1. Apply the fundamental concepts and techniques of computation, algorithms, and software design to a specific problem in a variety of applied fields;
- 2. Provide detailed specifications, analyze the problem, and design a solution that functions as desired, has satisfactory performance, is reliable and maintainable, and meets desired criteria;
- 3. Apply a firm understanding in areas of mathematics and science.

<u>Units of study in detail – Unit Student Learning Outcomes:</u>

<u>Unit I</u> Levels of Computer Architecture [Supports Course SLO #1] Learning Objectives

The student will be able to:

- Identify the basic parts of a computer.
 - Formulate a high-level view of a computer system.

<u>Unit II</u> Data Representation [Supports Course SLO #2]

Learning Objectives

The student will be able to:

- Explain how information is represented in a computer.
- Convert a binary number to a decimal number.
- Convert a decimal number to a binary number.
- Convert from binary to hexadecimal and conversely.
- Describe character codes.

<u>Unit III</u> <u>Digital Logic [Supports Course SLO #3]</u>

Learning Objectives

The student will be able to:

- Write truth table for AND, OR, NAND, NOR, NOT, XOR and XNOR gates.
- Simplify Boolean expressions.
- Interpret circuit diagrams.
- Analyze combinational circuits and sequential circuits.
- Analyze flip-flop circuits using timing diagram.

<u>Unit IV</u> Instruction Set Architecture and Languages [Supports Course SLO #2, 4, 5] Learning Objectives

The student will be able to:

- ne student will be able to.
 - Explain instruction processing.Interpret different Instruction formats and types.
 - Describe the compilation and assembly processes.
 - Use assembly language instruction sets to write assembly language programs.

<u>Unit V</u> Memory and I/O Systems [Supports Course SLO #1, 2, 4]

Learning Objectives

The student will be able to:

- Understand different types of memory, the memory hierarchy and cache mapping.
- Interpret virtual memory and paging.
- Explain I/O architectures and control methods.
- Describe I/O bus communications and transmission modes.

<u>Unit VI</u> Alternative Architectures [Supports Course SLO #1, 2, 4]

Learning Objectives

The student will be able to:

- Distinguish between RISC (Reduced Instruction Set Computer) and CISC (Complex Instruction Set Computer).
- Explain parallel and distributed architecture systems.

Evaluation of student learning:

Specific methods for evaluating student progress through the course is up to the discretion of the instructor. Below is an example:

Participation = 10% of the grade Homework/Projects = 30% of the grade Tests/Quizzes = 30% of the grade Final Exam = 30% of the grade